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An efficient procedure to compute Hamiltonian matrix elements and reduced one- and two-particle density
matrices for electronic wave functions using a new graphical-based nonlinear expansion form is presented.
This method is based on spin eigenfunctions using the graphical unitary group approach (GUGA), and the
wave function is expanded in a basis of product functions (each of which is equivalent to some linear
combination of all of the configuration state functions), allowing application to closed- and open-shell systems
and to ground and excited electronic states. In general, the effort required to construct an individual Hamiltonian
matrix element between two product basis functionsHMN ) 〈M|Ĥ|N〉 scales asO (ân4) for a wave function
expanded inn molecular orbitals. The prefactorâ itself scales betweenN0 andN2, for N electrons, depending
on the complexity of the underlying Shavitt graph. Timings with our initial implementation of this method
are very promising. Wave function expansions that are orders of magnitude larger than can be treated with
traditional CI methods require only modest effort with our new method.

1. Introduction

In previous work,1 we introduced a computational method
based on a new expansion basis form for electronic wave
functions. This method is based on the graphical unitary group
approach (GUGA) of Shavitt,2-8 which utilizes a graphical
representation of the unitary group approach (UGA) of Paldus.9-11

This new approach is intended to be used in MCSCF5,12-14 and
configuration interaction2-11 (CI) wave functions, and it is being
developed within the COLUMBUS Program System,14-16 the
main emphasis of which is the accurate computation of global
potential energy surfaces of ground and excited states. The wave
function is expanded in a basis of product functions, and each
product function depends on a relatively small number of
nonlinear parameters but is equivalent to some linear combina-
tion of all the configuration state functions (CSFs). In the
previous work, we developed recursive procedures to compute
efficiently the overlap (scalar product) between two product
basis functionsSMN ) 〈M|N〉. In the present work, we extend
that same recursive approach to efficiently compute Hamiltonian
matrix elementsHMN ) 〈M|Ĥ|N〉, transition one-particle reduced
density matrix elementsDpq

MN, and transition two-particle re-
duced density matrix elementsdpqrs

MN . From these quantities,
ground and excited electronic state energies may be computed
along with the expectation values of other arbitrary one- and
two-electron operators. In general, the effort required to
construct an individual Hamiltonian matrix element between
two product basis functionsHMN ) 〈M|Ĥ|N〉 scales asO (ân4)
for a wave function expanded inn molecular orbitals. The
prefactorâ itself scales betweenN0 and N2, for N electrons,
depending on the complexity of the underlying Shavitt graph.

2. Method

We summarize briefly the method and notation that was
introduced in ref 1. Eachnode, indexed byj, of aShaVitt graph

corresponds to an integer triple (aj, bj, cj) of a row of aPaldus
ABC tableau.9-11 These integers are related to the number of
orbitals nj, the number of electronsNj, and the spin quantum
numberSj according to

Each nodej thereby corresponds to anŜ2 spin eigenfunction
with eigenvalueSj(Sj + 1), to a specific number of electrons
Nj, and to a subspace of the orbitals of dimensionnj. The
individual orbitals correspond to vertical levels in the graph.
The Shavitt graph is a directed graph with a singletail (source)
node, located at a fictitious level 0 corresponding to the physical
vacuum, and a singlehead (sink) at the highest level corre-
sponding to theN andSof the molecule of interest. The nodes
at one level are connected witharcs (or steps) to the nodes at
the adjacent levels. There are four possible step numbers that
connect the nodes, denoted by the integerd with 0 e d e 3.
The changes of the various quantities associated with each of
these steps are summarized in Table 1. Each node in the Shavitt
graph is connected to between one and four nodes at the next
higher level and to one to four nodes at the next lower level
(except for the tail, which has no lower arcs, and the head, which
has no higher arcs).

Each CSF corresponds to a walk from the graph tail to the
graph head. This walk touches one node at each level, and it
touches only the single arc at each level that connects the node
below it to the node above it in that walk. A CSF can thereby
be represented by denoting either the set of nodes in the
corresponding walk or by denoting the sequence of steps (the
stepVector) in that walk. In a typical Shavitt graph, an individual
node may be touched by many walks, so it is convenient to
organize the graph on the basis of storage of the nodes; the* shepard@tcg.anl.gov.

Nj ) 2aj + bj

Sj ) bj/2

nj ) aj + bj + cj (1)
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storage of the connecting arcs, and other information discussed
below associated with that node, is called adistinct row table
(DRT). Each CSF may be assigned a contiguous integer index
m with 1 e m e Ncsf which may be computed as a summation
of the integerarc weightsthat are associated with the arcs.

We adopt the convention thatjp is the node index of the bottom
of the arc in the walk of interest at levelp, anddp is the step
number associated with the arc. In this way, the pair of indices
(d, j) specify an arc. In the following, it is sometimes convenient
to denote a (d, j) pair by a single arc indexµ, andµ(p) in eq 2
is the arc at levelp in the walk. From the information stored in
the DRT, it is straightforward to construct the step vector from
a given CSF indexm, or to do the reverse and determine the
integer CSF indexm from a given step vector.

In aproduct basis function, a numericalarc factoris assigned
to each of the arcs in a given Shavitt graph. These arc factors
are denoted individually asRdj where, analogous to theydj

notation of the arc weights given above,j is the index of the
node at the bottom of the arc andd is the step number of the
arc. The CSF coefficientxm associated with a particular walk
m is taken as the product of the arc factors in that walk. That
is, in analogy to eq 2

Because one arc factor is associated with each orbital level in
this product, there are always exactlyn arc factors that contribute
to each of the CSF coefficients. A product basis function,
denoted|M〉, is then defined in terms of these CSFs|m̃〉 and
their coefficientsxm

M as

and thus corresponds to a particular linear combination of all
the CSFs in the linear expansion basis. The product function
|M〉 is a linear combination of spin eigenfunctions; therefore, it
also is an eigenfunction ofŜ2. There can be several sets of arc
factors, each of which is associated with a corresponding product
function through eqs 3 and 4. The mapping of a set of arc factors
to the vector of CSF coefficients will be denoted asxM ≡ L (RM).
This is a many-to-one mapping, because more than one set of
arc factorsR map to the same CSF coefficient vectorx. This
lack of uniqueness may be eliminated1 by introducing an arc
phase and normalization convention based on the lower walk
partial product functionsthat are associated with each node of
the Shavitt graph. A set of arc factorsRM that satisfy this
normalization convention is instandard form, and such a set
of arc factors may be characterized by a smaller number of
essential variational parametersæM. The number of these

essential variables1 is given byNæ ) Narc - Nrow + 1 where
Narc andNrow are the number of arcs and nodes, respectively, in
the Shavitt graph. Table 2 shows the relation betweenNcsf, Nrow,
and Næ for a set of Shavitt graphs that correspond to singlet
full-CI calculations withn ) N ranging fromn ) 2 to n ) 46.
The goal of the product function approach is to make as much
as possible of the effort that is related to wave function
manipulation, interpretation, optimization, and storage depend
on Nrow rather than the much larger numberNcsf.

A single product function|M〉 is itself equivalent to a
complicated linear combination of CSFs, and it is capable of
describing molecular bond dissociation processes, spin recou-
pling, and electron correlation, and it has other interesting
features.1 A single product function has sufficient flexibility,
through its associated arc factors, to cover the entire set of CSFs
within the underlying linear expansion space.1 However, a single
product function cannot represent an arbitrary vector (i.e., an
arbitrary linear combination of CSFs) within that space. To allow
for additional flexibility, we define a general linear combination
wave function as

in which theNR product functions|M〉 form an expansion basis.
The optimization of the linear expansion coefficientsc to
minimize the energy expectation value takes the form of a
generalized symmetric eigenvalue equation

with HMN ) 〈M|Ĥ|N〉 and SMN ) 〈M|N〉. In this approach,H
and S are roughly analogous to the corresponding subspace
matrices in a Lanczos or Davidson type of iterative procedure17

used commonly in traditional CI approaches. The efficient
computation of the metric matrixS has been described previ-
ously;1 this is achieved using a recursive procedure with effort
that scales asNrow and that does not depend onNcsf. The
computation of the Hamiltonian matrixH in the product function
basis is the subject of the present work, and we seek a similar
recursive algorithm with effort that does not depend onNcsf.
Through the Ritz variational principle, the lowest eigenvalues
computed from the product function basis in eq 6 are upper
bounds to the corresponding eigenvalues of the underlying linear
CSF expansion space, which in turn are upper bounds to the
exact full-CI eigenvalues. Consequently, this general approach
is applicable to both ground and excited electronic states. As
the expansion setNR increases, the eigenvalues from eq 6 are
bounded from below only by the eigenvalues of the underlying
CSF space,1 that is, the linear combination product function form
does not represent an inherent formal limitation on the accuracy
of the computed wave function. The wave function|ψ〉 is a
spin eigenfunction because the product basis functions|M〉 are
eigenfunctions ofŜ2; therefore, our method does not suffer from
spin contamination or spin instabilities.

If xM ) L (RM) and xN ) L (RN) are the vectors of CSF
coefficients of the product functions defined byRM andRN, then
HMN ) (xM)TĤxN (whereĤ is the Hamiltonian matrix in the
CSF basis) is the matrix element of interest. One way to compute
this quantity would be to construct the vectorsxM and xN

explicitly, and to compute the matrix-vector and scalar products
directly from these expanded vectors using traditional CI
technology. Our approach discussed below requires both less
computational effort and less storage for large expansions than
this straightforward approach.

TABLE 1: Characterization of Step Numbersa

d ∆ad ∆bd ∆cd ∆Nd ∆Sd

0 0 0 1 0 0
1 0 +1 0 1 +1/2
2 1 -1 1 1 -1/2
3 1 0 0 2 0

a ∆x ) xp+1 - xp for x ) a, b, c, N, andS at levelp.

m ) 1 + ∑
p)0

n-1

ydpjp
) 1 + ∑

p)0

n-1

yµ(p) (2)

xm ) ∏
p)0

n-1

Rdp,mjp,m
) ∏

p)0

n-1

Rµ(p,m) (3)

|M〉 ) ∑
m)1

Ncsf

xm
M|m̃〉 (4)

|ψ〉 ) ∑
M

NR

cM|M〉 (5)

Hc ) ScE (6)
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A Hamiltonian matrix element in the product function basis
may be written using standard GUGA notation as

hpq andgpqrs are the one- and two-electron Hamiltonian integrals
indexed by the molecular orbital indicesp, q, r, and s. The
operatorsÊpq and êpqrs ≡ ÊpqÊrs - δrqÊps are the generators
and the normal-order generator products. The matrix elements
〈m̃|Êpq|ñ〉 and〈m̃|êpqrs|ñ〉 are the one- and two-electron coupling
coefficients, and in traditional MCSCF and CI approaches,2-18

these are the primary quantities of interest in computing matrix-
vector products. The commutation relation [Êpq,Êrs] ) δrqÊps

- δpsÊrq results in the operator identityêpqrs ) êrspq.
In the current approach, we write the Hamiltonian matrix

element as

Because of the index symmetry of the one- and two-electron

integrals (i.e.,hpq ) hqp, gpqrs ) gpqsr, andgpqrs ) grspq with all
quantities assumed to be real), we may choose to use in eq 8
the symmetrized one- and two-particle transition density ma-
trices, which are defined as

These expressions define the normalization and indexing
conventions of the density matrices in this work (see also refs
13 and 18). The adjoint operator identityÊpq ) Êqp

† results in
the identitiesDMN ) DNM anddMN ) dNM. Given the one- and
two-particle transition density matrix elements, it is straight-
forward to combine these quantities with the appropriate
Hamiltonian integrals to compute the matrix elementHMN. Given
the expansion coefficients for two states|ψI〉 and|ψJ〉 from eqs
5 and 6, the state transition density matrices may be computed
as

From these quantities, arbitrary expectation values (I ) J) and
transition properties (I * J) may be computed. Thus, the
transition reduced density matricesDMN anddMN in the product
function basis are the fundamental quantities in this approach.
We now focus on the efficient computation of these reduced
density elements.

TABLE 2: Statistics for Singlet Full-CI Wave Function Expansions

n ) N Ncsf Nrow Næ Npair
a Nvalue

b time c

2 3 5 2 10 26 0.00
4 20 14 13 43 278 0.00
6 175 30 39 120 1058 0.00
8 1 764 55 86 261 2682 0.00

10 19 404 91 160 486 5466 0.00
12 226 512 140 267 815 9726 0.00
14 2 760 615 204 413 1268 15778 0.01
16 34 763 300 285 604 1865 23938 0.04
18 449 141 836 385 846 2626 34522 0.07
20 5 924 217 936 506 1145 3571 47846 0.13
22 79 483 257 308 650 1507 4720 64226 0.21
24 1 081 724 803 600 819 1938 6093 83978 0.34
26 14 901 311 070 000 1015 2444 7710 107418 0.54
28 207 426 250 094 400 1240 3031 9591 134862 0.82
30 2 913 690 606 794 775 1496 3705 11756 166626 1.21
32 41 255 439 318 353 700 1785 4472 14225 203026 1.75
34 588 272 005 095 043 500 2109 5338 17018 244378 2.49
36 8 441 132 926 294 530 000 2470 6309 20115 290998 3.46
38 121 805 548 126 430 067 900 2870 7391 23656 343202 4.66
40 1 766 594 752 418 700 032 400 3311 8590 27541 401306 6.27
42 25 739 723 541 439 406 257 200 3795 9912 31830 465626 8.25
44 376 607 675 256 599 252 232 000 4324 11363 36543 536478 11.19
46 5 531 425 230 331 301 517 157 500 4900 12949 41700 614178 14.43

a Npair is the total number of pairs of nodes in the Shavitt graph (that contribute to upper-triangular Shavitt loops) and the number of vertices in
the auxiliary pair graph.b Nvalue is the total number of segment values.c Times are in seconds on a 2.5 GHz PowerMac G5 (PPC 970) to construct
a single〈M|Ĥ|N〉 matrix element involving two product functions|M〉 and |N〉.

HMN ) 〈M|Ĥ|N〉

) ∑
m,n

xm
M xn

N〈m̃|Ĥ|ñ〉

) ∑
m,n

xm
M xn

N(∑
p,q

hpq〈m̃|Êpq|ñ〉 +
1

2
∑

p,q,r,s

gpqrs〈m̃|êpqrs|ñ〉) (7)

HMN ) ∑
p,q

hpq(∑
m,n

xm
M xn

N〈m̃|Êpq|ñ〉) +

1

2
∑

p,q,r,s

gpqrs(∑
m,n

xm
M xn

N〈m̃|êpqrs|ñ〉)

) ∑
p,q

hpq〈M|Êpq|N〉 +
1

2
∑

p,q,r,s

gpqrs〈M|êpqrs|N〉

) ∑
p,q

hpqDpq
MN +

1

2
∑

p,q,r,s

gpqrsdpqrs
MN

) Tr(hDMN) + 1
2

Tr(gdMN) (8)

Dpq
MN )

1

2
∑
m,n

xm
M xn

N〈m̃|Êpq + Êqp|ñ〉 )
1

2
〈M|Êpq + Êqp|N〉

dpqrs
MN )

1

4
∑
m,n

xm
M xn

N〈m̃|êpqrs + êpqsr + êqprs + êqpsr|ñ〉

)
1

4
〈M|êpqrs + êpqsr + êqprs + êqpsr|N〉 (9)

Dpq
IJ )

1

2
〈ψI|Êpq + Êqp|ψJ〉 ) ∑

M,N

cM
I cN

J Dpq
MN

dpqrs
IJ )

1

4
〈ψI|êpqrs + êpqsr + êqprs + êqpsr|ψJ〉 ) ∑

M,N

cM
I cN

J dpqrs
MN

(10)
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In the GUGA approach, coupling coefficients are computed
from ShaVitt loops. See Figure 1 for an example of a Shavitt
loop and its corresponding one-particle coupling coefficient.
CSFs|m̃〉 and|ñ〉 correspond to two walks from the tail to the
head of the Shavitt graph. In general, there is a common section
at the bottom of the graph in which the two walks share the
same arcs and nodes, there is a middle section in which the
two walks differ, and there is a common section at the top of
the graph where the two walks again share the same arcs and
nodes. The middle section is called the Shavitt loop, the bottom
section is called thelower walk of the Shavitt loop, and the
upper section is called theupper walkof the Shavitt loop. The
node at the top of the Shavitt loop at levelq, denotedh in Figure
1, is called theloop head, and the node at the bottom of the
Shavitt loop at level (p - 1), denotedt, is called theloop tail.
One of the important features of the GUGA approach is that
the coupling coefficient value depends only on the Shavitt loop
and does not depend on the upper and lower walks, even in
situations in which those partial walks contain singly or doubly
occupied orbitals. For the typical Shavitt graphs that occur in
MCSCF and CI calculations, there are relatively few Shavitt
loops, out of the very large total number possible, that have
nonzero loop values. In traditional CI approaches based on
GUGA, the emphasis is therefore focused on the efficient
construction of the individual Shavitt loops that have nonzero
loop values and on the efficient organization of this loop
construction, so that the computed coupling coefficients can be
combined efficiently with the corresponding one- and two-
electron Hamiltonian integrals. A Shavitt loop consists of a

sequence ofsegments, which are the bra and ket steps at a given
level within the loop. The 16 possiblesegment shapes(the
combinations of the 4 bra steps and 4 ket steps) are listed in
Table 3. The coupling coefficient value may be computed as a
product of segmentValues (or in some cases as a linear
combination of 2 such products); this property is important to
the present method. Figure 2 shows schematically all of the
unique loop shapes that are used in our procedure. This figure
is based on Figure 8 in ref 6. The schematic segments that are
shown are indicative only of the occupation difference between
the bra and the ket segments of the loop, not of specific actual
segment shapes. The segment value types associated with each
level of each loop shape are indicated next to the loop diagram
in Figure 2. The bra branch of each loop shape is indicated
with a dotted line, and the ket branch is indicated with a solid
line. If the bra and ket branches are exactly the same over some
orbital range, then a single line is shown in the loop shape figure
with a D (diagonal) segment value type (which is shorthand
for the segment typeRL0). If the bra and ket branches are not
necessarily exactly the same, but rather correspond to∆N ) 0
and∆∆N ) 0 (see Table 3), then the bra and ket branches are
drawn close together but are distinct.

Given a Shavitt loopT and its loop valueW (T), the upper
and lower walks are then generated only in order to determine
the set of CSF indicesm and n which share that loop value.
That is,〈m̃|Êpq|ñ〉 ) W (T) (or 〈m̃|êpqrs|ñ〉 ) W (T), as appropri-
ate) for all CSFsm and n associated with that Shavitt loop.
Figure 3 outlines the traditional GUGA procedure for the direct
computation of the contributions from a single Shavitt loop to
a matrix-vector productw ) Ĥx in the CSF basis. The
difference (m - n) of these walk indices depends only on the
arc weights of the Shavitt loop and is therefore the same for all
possible upper and lower walks. Furthermore, given, for
example, a set of arc weights computed with a forward lexical
scheme, all of the lower walks associated with a given upper
walk will occur within a contiguous sequence of index values,
the number of which is thelower walk node weight, xt. The
total contributions to a Hamiltonian matrix in the CSF basis,
from a particular Shavitt loop, therefore consists of a number
of codiagonal sequences of equal value and all of lengthxt and
the number of these contiguous sequences is theupper walk
node weight xjh. The total number of matrix contributions from
a particular Shavitt loop is given by the product (xtxjh), and this

Figure 1. The graphical representation is shown for two walks|m̃〉
and |ñ〉 and the associated coupling coefficient〈m̃|Êpq|ñ〉. The repre-
sentation on the left is the Shavitt graph, and the representation on the
right is the auxiliary pair graph. In the Shavitt graph, the bra walk|m̃〉
is represented with the dotted lines, and the ket|ñ〉 is represented with
the solid lines. The two walks coincide in the lower walk region between
the graph tail and the loop tailt, and they coincide in the upper walk
region between the loop headh and the graph head. The coupling
coefficient depends only on the middle section where the walks differ,
which constitutes the Shavitt loop, and its value is the product of the
segment values within the loop range. In the pair graph, each vertex
corresponds to a pair of nodes at the same level in the Shavitt graph,
and the bra and ket walk pair in the Shavitt graph is represented as a
single path in the node-pair graph. Each edge in the node-pair graph
corresponds to a segment of the Shavitt graph, which in turn consists
of the bra arc and ket arc pair that connects the bra and ket nodes at
one level to the bra and ket nodes at the next higher level. The vertices
of the pair graph are grouped according to the occupation difference
∆N ) Nbra - Nket.

TABLE 3: Segment Shapes Categorized by Occupation
Changea

∆∆N (dbra, dket) ∆Np segment value typesb

-2 (0, 3) -1 RhL
0 RR0

-1 (2, 3), (1, 3), (0, 2), (0, 1) -1 L
0 Rh, WRh, RL1

+1 RRh0, RRh1

0 (3, 3), (2, 2), (2, 1), (1, 2), -1 L
(1, 1), (0, 0) 0 W, WW, RL1,RL1, RL0, RL1

+1 R, WR, RRh
+2 RR0, RR1

+1 (3, 2), (3, 1), (2, 0), (1, 0) 0 Lh, RL1

+1 R, RW, RLh1

+2 RR0, RR1

+2 (3, 0) +2 RR0

a ∆N ) Nbra - Nket; ∆∆N ) ∆Np - ∆Np-1. b The superscripts
correspond to thex ) 0 or x ) 1 spin recoupling index.
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product satisfies (xtxjh) e Ncsf. In the construction of a Hamil-
tonian matrix-vector product, each Shavitt loop therefore is
associated with 2(xtxjh) arithmetic operations, a multiply and an
add for each combination of CSF indicesm andn.

In a typical implementation of this approach, only Shavitt
loops that contribute to the upper triangle of the Hamiltonian
matrix in the CSF basis are constructed explicitly, and the bra
and ket CSF indices are interchanged in order to generate the

contribution to the other half of the (symmetric) Hamiltonian
matrix; in this case, each (nondiagonal) Shavitt loop is associated
with 4 (xtxjh) arithmetic operations in a matrix-vector product
operation. It is only these distinct loop shapes that are shown
in Figure 2. If a reverse lexical index scheme is used to
determine the arc weights, then the above comments still apply,
but the roles of the upper and lower walks are reversed and the
upper/lower triangle designation of the individual loop shapes

Figure 2. The list of unique Shavitt loop shapes used to construct the full set of density matrix elements. The coefficients of each of the Shavitt
loop values along with the density matrix indices are given below the loop shape. The segment value types at each level are written to the right of
the loop shape diagram. The loop shapes are grouped according to the number of distinct orbital indices.
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is sometimes switched; the MCSCF DRT and internal part of
the CI DRT used in the COLUMBUS program system employ
a reverse lexical index scheme.5,13-16

At this point, we introduce an auxiliary graphical structure
that will be used in the development of the current method.
This will be called theauxiliary pair graph. Like the corre-
sponding Shavitt graph, it is ordered by orbital level from bottom
to top. Each level of the pair graph has a set of nodes which, to
avoid confusion with the Shavitt graph, will be calledVertices.
Each vertex of the pair graph corresponds to a pair of nodes (j,
j′) in the same level of the Shavitt graph. The only node pairs
of interest are those that contribute to the Shavitt loops
associated with the coupling coefficients in eq 7. The first step
in constructing the pair graph is to determine this list of node
pairs at each level. The node pairs are characterized first by the
quantity ∆N with ∆N ) Nbra - Nket. The node pairs that
contribute to the Hamiltonian matrix satisfy|∆N| e 2, and the
node pairs that contribute to the upper triangle of the CSF
Hamiltonian matrix correspond to the subset-1 e ∆N e 2.
The∆N ) -2 node pairs contribute only to the lower triangle
of the Hamiltonian matrix, so they are not referenced in our
approach in which only the distinct upper triangle Shavitt loops
are generated and the bra-ket interchange is applied in order
to generate the other triangle terms. The node pairs are next
characterized by∆b ) bbra - bket. The node pairs that contribute
to Hamiltonian matrix elements satisfy the spin condition|∆b|
e 2. The result from both the occupation and the spin conditions
is that an individual node in a Shavitt graph can be paired with,
at most, only 10 other nodes (at the same level). These 10
possibilities, each of which corresponds to a unique (∆a, ∆b)
combination, are enumerated in Table 4. Thus, the total number
of node pairs satisfiesNpair < 10Nrow, and for large Shavitt
graphs, the number of node pairs increases only linearly with
the number of nodes (rather than quadratic as the term might
imply). Table 2 shows some actual node pair counts for a
selection of Shavitt graphs, and it is seen that the total number
of node pairs ranges between 2 and 9 times the number of nodes.
At the beginning of the procedure, all of the possible node pairs
for the given Shavitt graph are determined, and they are grouped

in such a way that they can be indexed by orbital level and by
∆N; other than this grouping, we impose in our initial
implementation no further ordering of the node pairs. This set
of node pairs defines the vertices of the auxiliary pair graph.
The next step of the pair graph construction consists of
enumerating all possible segments that connect node pairs at
one level to the node pairs at the next higher level. These
segments are specific instances of the segment shapes enumer-
ated in Table 3. The connection between two vertices of the
pair graph will be called anedge. Thus, in the present discussion,
the Shavitt graph consists of nodes connected by arcs, whereas
the pair graph consists of vertices connected by edges.

The auxiliary pair graph does not replace the Shavitt graph
in this formulation; in fact, it contains, in principle, no new
information. Rather, it simplifies the conceptual treatment of
Shavitt loop construction and coupling coefficient evaluation.
This is demonstrated in the right-hand side of Figure 1 in which
the Shavitt loop is represented as a single directed walk on the
auxiliary pair graph. In general, each pair of CSFs that form a
nonzero coupling coefficient corresponds to a path on the node-
pair graph from its tail to its head. There is a bottom part of
this path that corresponds to the lower walk of the Shavitt loop,
there is a middle section of the path that corresponds to the
Shavitt loop itself, and there is an upper section of the path
that corresponds to the upper walk of the Shavitt loop. Pairs of
CSFs that do not satisfy the∆N and∆b conditions at each level
(and therefore would result in zero coupling coefficient values)
cannot be represented as a path on the pair graph. The segment
values of the Shavitt loop on the left of Figure 1 are associated
with edges of the pair graph, and the coupling coefficient value,
which is computed as the product of segment values of the
Shavitt loop in the Shavitt graph, corresponds to a product of
edge values in the node-pair graph. A particular edge of the
pair graph may be associated with several different Shavitt loops
of the same shape and the same segment value and also with
Shavitt loops of different loop shapes; each edge may thereby
be associated with several different segment values.

When constructing a transition density matrix with the
traditional GUGA approach, the following contribution is
accumulated for each Shavitt loopT:

If only the upper-triangle Shavitt loops are generated, then the
summation includes also the bra-ket interchange terms. Thus,
there are either 2 (xtxjh) or 4 (xtxjh) arithmetic operations,
depending on how the CSF index symmetry is treated, associated
with each Shavitt loop value in the construction of the density
matrix element, the same operation count as for a Hamiltonian
matrix-vector product. The density matrix element is the
summation of these contributions over all Shavitt loops

We now apply the above density matrix construction approach
to a pair of product functions. It is convenient to separate the
arc factors from eq 3 into the three parts corresponding to the
lower walk range, the loop range, and the upper walk range.

This separation allows the summation of CSF coefficient

Figure 3. Outline of w ) Ĥx in the CSF basis with the traditional
GUGA approach. This is the contribution from a single Shavitt loop
valueW (T). The same upper and lower walk structure applies to both
one-electron and two-electron Hamiltonian integral contributions.

TABLE 4: Node Pairsa

∆N (∆a, ∆b)

-1 (0,-1), (-1, +1)
0 (0, 0), (-1, +2), (+1, -2)

+1 (0,+1), (+1, -1)
+2 (0,+2), (+1, 0), (+2, -2)

a Node pairs that contribute to upper triangle Shavitt loops;∆N )
Nbra - Nket; ∆a ) abra - aket; ∆b ) bbra - bket. Each node of the Shavitt
graph may be paired with other nodes at the same level characterized
by these (∆a, ∆b) values.

Dpq
MN r W (T)‚ ∑

upper(T)
∑

lower(T)

xm
M xn

N (11)

Dpq
MN ) ∑

T

W (T)‚ ∑
upper(T)

∑
lower(T)

xm
M xn

N (12)

xm
M ) ( ∏

u

(lower)

Rµ(u,m)
M )‚(∏

u

(loop)

Rµ(u,m)
M )‚( ∏

u

(upper)

Rµ(u,m)
M ) (13)
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products to be written as

The arraysγMN and γjMN have been introduced in ref 1, and
they are used in the construction of the overlap matrixSMN )
〈M|N〉, of the derivatives∂SMN/∂Rµ, and in the construction of
node and arc densities. These arrays, which do not depend on
the individual Shavitt loop, can be computed once, using a
recursive algorithm with an effort that scales only as the number
of nodes in the graphNrow, and reused for all Shavitt loops.
The transition density construction for product functions from
a single Shavitt loop can then be written

It is clear already that the product function leads to a much
simpler procedure than the traditional GUGA CI approach
because the 4 (xtxjh) arithmetic operations associated with the
explicit DO loops over the upper and lower walks are eliminated
and replaced instead with simple array lookups.

Consider next the computation of theW (T)‚(Πu)(p-1)
(q-1) Rµ(u,m)

M

Rµ(u,n)
N ) product in eq 15 for a single Shavitt loop. In the GUGA

approach, the loop value is itself a product of segment values

Tu ≡ Tu(dbra, dket, bbra, bket; Qu) is the segment of the Shavitt
loop T that connects the bra and ket nodes at levelu to the bra
and ket nodes at level (u + 1), Qu is the segment value type at
level u, andW (Tu) is the segment value associated with that
segment.2-8 In the pair graph representation,Tu corresponds to
an individual edge connecting two vertices. This segment
factorization allows the loop product contribution to be written
in the factored form

Thesegment factor Fν(u),ν′(u+1)
MN (Qu) ≡ W (Tu)Rµ(u,m)

M Rµ(u,n)
N is the

combination of the GUGA segment value and the bra and ket
arc factors at levelu. ν(u) andν′(u + 1) are the vertices of the

pair graph that are connected by the edge that corresponds to
that segment. The density contribution from a single Shavitt
loop can be written as

We now examine in detail how the contributions from all
Shavitt loopsT can be computed efficiently. The total density
is given by the summation of contributions over all Shavitt loops
T.

In the auxiliary pair graph, this summation corresponds to the
contributions from all paths with nonzero loop values. All
Shavitt loops that terminate at the head nodeh share the common
factor γjh

MN. If all of these loop contributions are summed
together, their density contributions could be computed with a
single multiplication by that common factorγjh

MN. That is, ifVν′
q

with ν′ ) ν′(h,h) is the total contribution from all Shavitt loops
with head nodeh

then the density can be computed as

where the summation is limited to theNrow(q) nodesh at level
q. If there areNω total Shavitt loops, this approach would reduce
the total number of arithmetic operations by the quantity 2[Nω
- Nrow(q)] (i.e., Nω separate multiply-add operations with the
factorsγjh

MN would be replaced byNrow(q) operations).
We next consider how the contributions from all Shavitt loops

with the head nodeh can be computed. As shown schematically
in the auxiliary pair graph patch in Figure 4, the Shavitt loops
with head nodeh at levelq all pass through vertices at level (q
- 1) and terminate at the vertex corresponding to the diagonal
node pairν′ ) ν′(h,h). We assume for the moment that all Shavitt
loop contributions from the connecting vertices at level (q -
1) are available. Let these quantities be denotedVν

q-1. In
Figure 4, it is assumed that there are four vertices that are
associated with edges that connect to the head nodeh; the actual
number of connecting vertices for the various Shavitt loop
segments is limited by the∆∆N segment classification in Table
3 and also by the available arcs and nodes of the Shavitt graph.
By using the (arbitrary) vertex labels in Figure 4, the total Shavitt
loop contribution from nodeh may be written as

In general, for an arbitrary loop shape, the total contributions
to the head nodeh may be computed as

ν′(h,h) is the diagonal node pair (h, h) associated with the loop

∑
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u)(p-1)

(q-1)

W (Tu) (16)

W(T) ∏
u)(p-1)

(q-1)

Rµ(u,m)
M Rµ(u,n)

N ) ∏
u)(p-1)

(q-1)

W(Tu)Rµ(u,m)
M Rµ(u,n)

N

) ∏
u)(p-1)

(q-1)

Fν(u),ν′(u+1)
MN (Qu) (17)

Dpq
MN r γt

MN[ ∏
u)(p-1)

(q-1)

Fν(u),ν′(u+1)
MN (Qu)]γjh

MN (18)

Dpq
MN ) ∑

T

γt(T)
MN‚[ ∏

u)(p-1)

(q-1)

Fν(u),ν′(u+1)
MN (Qu)]‚γjh(T)

MN (19)

Vν′
q ) ∑

T

(headh)

γt(T)
MN‚[ ∏

u)(p-1)

(q-1)

Fν(u),ν′
MN (Qu)] (20)

Dpq
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q γjh
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MN(Rh) + V3
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V5
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MN(Rh) + V7
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headh in level q. The summation ranges over all verticesν at
level (q - 1) that connect toν′(h,h) with segment typeQq-1.

This same procedure can then be invoked for the segment
factors between levels (q - 2) and (q - 1). For example, the
contributions to nodeν ) 2 in Figure 4 may be computed as

in which nodeν ) 2 is connected to the six nodes shown at the
lower level. In general, the node-pair valuesVν′

u can be
computed recursively from theVν

u-1 node-pair values and the
Fν,ν′

MN(Qu-1) segment factors that are common to all Shavitt
loops that share that segment. At an arbitrary level within the
Shavitt loop, we have the general recursion relation

The summation is limited to only the nodesν in level (u - 1)
that connect to nodeν′ in level u with segment typeQu-1. As
seen in Table 3, the number of terms in this summation ranges
between one and six, depending on the∆∆N segment type and
on the available edges in the pair graph. The common factors
Fν,ν′

MN(Qu-1) at each level within the loop range can be sepa-
rated, level by level, until all that remains are theγt

MN factors
for all possible loop tailst at level (p - 1). The Dpq

MN

construction process then consists of an initiation at level (p -
1) over all Shavitt loop tails, a level-by-level propagation of
node-pair valuesVν

u up to level (q - 1), and a termination at

level q over all loop heads. The overall procedure for product
functions consists not of constructing individual Shavitt loops
and summing each of those contributions individually, but rather
the propagation of all possible Shavitt loop contributions from
all node pairs at one level to the node pairs at the next higher
level, and finally the combination over all possible loop heads
to construct the density matrix element.

The above recursive formulation is equivalent to a sequence
of matrix-vector products.

A transition density element may be written in symbolic form
as

The matricesFMN are rectangular and, depending on the loop
shapeQ and the complexity of the underlying auxiliary pair
graph, relatively sparse. The rows and columns of theFMN

matrices are indexed by the vertices of the auxiliary pair graph
at the two adjacent orbital levels.γj(q)

MN is a column vector
indexed by diagonal head node pairs at levelq, andγ(p-1)

MN is a
row vector indexed by diagonal tail node pairs at level (p - 1).
Our recursive procedure outlined above is equivalent to the
computation of this product in left-to-right order, and the node
pair valuesVu in eq 26 are the intermediate (row) vectors at
level u in this series of matrix-vector products.

It has been assumed in the above discussion that the orbital
levels p and q are given, and that the contributions from all
possible Shavitt loops are included into theDpq

MN matrix
element for that pair of orbital indices. Given thatDpq

MN has
been constructed using the recursive level-by-level procedure
of eq 25, consider the construction of theDp(q+1)

MN element. This
would, in principle, consist of the same initiation step at level
(p - 1) and propagation with factorsFν,ν′

MN(R) from levelp up to
level (q - 1), then another propagation withFν,ν′

MN(R) from level
(q - 1) to levelq, and finally the termination with theFν,ν′

MN(Rh)
segment factors from levelq to the loop head nodes at level (q
+ 1). The first steps of this process, initiation at level (p - 1)
and propagation up to level (q - 1), are repetitions of theDpq

MN

construction steps. This suggests a procedure in which these
common initiation and propagation steps are performed only
once, and that effort is shared for both density elements. This
is accomplished by constructingDpq

MN first, then discarding the
termination information at levelq, propagating up a single level
from (q - 1) to q, and then terminating at level (q + 1) to
form Dp(q+1)

MN . Given the node-pair valuesVq-1 from the Dpq
MN

construction step, the effort required to constructDp(q+1)
MN is

only the propagation step to formVq and the termination step
at level (q + 1). Our algorithm to achieve this reuse of the shared
node-pair values for the entire range of orbital indicesp andq
for the one-particle density is shown in Figure 5.

It should be pointed out that our choice of beginning the
propagation procedure at the level (p - 1) and propagating up
to level q is arbitrary; it would be just as easy to begin the
procedure at levelq and propagate down to level (p - 1). That
is, eq 27 could just as easily be evaluated in right-to-left order,
or some other combination of right-to-left for some levels and
left-to-right for other levels. This recursive procedure with reuse
of shared node-pair values may be applied to both one-particle
Shavitt loops and also to the various two-particle Shavitt loops.
As seen in Figure 2, there are only 24 different Shavitt loop

Figure 4. The Shavitt loop contributions represented on the auxiliary
pair graph for all contributions to nodeh at levelq. The∆N ) 0 pair
graph vertex denoted (h, h) corresponds to the Shavitt graph nodeh.
For this Shavitt loop shape, there are four edges, corresponding to∆∆N
) -1 in Table 3, that connect the (h, h) vertex to four∆N ) +1
vertices at level (q - 1). Each vertex at level (q - 1) is connected to
up to six vertices at level (q - 2) corresponding to the∆∆N ) 0
segments in Table 3. The vertices at level (q - 1) connect to other∆N
) 0 head nodes, which are not shown explicitly. Each vertexν in the
pair graph corresponds to aVν value. TheVν

u values at levelu in the
pair graph are computed recursively from theVν

u-1 values at level (u
- 1) and theFν,ν′

MN(Qu-1) values associated with the connecting edges.

V2
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shapes, so the programming effort that is required to implement
this approach for all one- and two-particle operators is relatively
modest. It is also seen in Figure 2 that a two-particle density
matrix element sometimes consists of contributions from two
Shavitt loop shapes. Our recursive algorithm for the construction
of the full set of both the one- and two-particle transition density
matrix elements is outlined in Figure 6. There is no component
of effort of this recursive algorithm that scales explicitly asNcsf,
and there is no storage requirement that scales asNcsf.

3. Results and Discussion

In this section, we consider the computational costs that are
associated with our new method in terms of storage and floating
point arithmetic effort. In contrast to the existing codes that

compute Shavitt loops and individual loop values, there is rela-
tively little arithmetic effort that is involved with this method.
In the traditional GUGA CI applications, there are 4 (xtxjh)
arithmetic operations associated with each Shavitt loop value
(assuming the bra-ket interchange is invoked on the upper
triangular Shavitt loop shapes). In the specific case of traditional
MR-CI(SD), only partial Shavitt loops are constructed in the
internal orbital space, the Shavitt loop contributions in the larger
external orbital space are treated implicitly, and consequently,
there is even a larger ratio of arithmetic effort to Shavitt loop
construction effort involved. In the product function case, how-
ever, these arithmetic operations associated with the upper and
lower walks are eliminated entirely and replaced with array
lookups. This makes the efficiency of the segment factor propa-
gation critical to the overall performance. To address this critical
aspect of the method, we have developed an efficient algorithm
to propagate the segment factor contributions from one level to
the next. This algorithm is discussed in detail in the Appendix.

Examination of Figure 6 reveals four nested DO loops,
suggesting an effortΘ(n) that scales as a fourth-order poly-
nomial in the molecular orbital basis sizen. Table 5 summarizes
the computational effort associated with each group of Shavitt
loop shapes. The integert corresponds to the number of distinct
orbital indices in the group of Shavitt loop shapes:t ) 1
corresponds to the one-index loop shapes (14ab), t ) 2
corresponds to the two-index loop shapes (11ab)-(13), and so
forth. Thep, q, r, ands labels correspond to the DO-loop indices
in Figure 6.Nt

IPT is the total number of initiations, propaga-
tions, and terminations (IPT) that occur at each DO-loop level.
For example, in theq DO loop, there are 6 Shavitt loop shapes
((11ab), (12abc), and (13)) that are terminated to construct the
dppqq

MN , dpqpq
MN , dpppq

MN , dpqqq
MN , andDpq

MN density elements, there are 12
propagations at levelq that prepare for the three- and four-
index loop shapes, and there are 6 propagations to prepare for
the next value ofq. These 24 ()6 + 12 + 6) IPT operations
are all of the general form of eqs 23 and 25.Nu,t is the number
of times the propagation and termination steps occur for each
orbital levelu within the tth nested DO loop. For example, the
two-index loop shape contributions in theq DO loop are
terminated (q - 1) times at levelq in order to generate the
D1,q

MN, D2,q
MN, ..., Dq-1,q

MN density elements. Note that there are
more terminations at the higher levels than at the lower levels;
some consequences of this are discussed below. The effort
required for the method is proportional to the sum over orbital
levels of the product of the number of IPTs at each orbital level
u, the number of times that orbital level occurs in the nested
DO loop structure, andâu the effort required to propagate the
node-pair values at that orbital level. A reasonable approxima-
tion for this effort is thatâu ∝ Nrow(u) or âu ∝ Npair(u). This
total is

Figure 5. The recursive procedure to compute the reduced transition
density matrixDMN.

Figure 6. Outline of the recursive procedure to compute the full set
of reduced transition density matricesDMN anddMN.

TABLE 5: Operation Countsa

t Nt
IPT DO loop Nu,t

1 6 p 1
2 24 q (u - 1)
3 27 r (u - 1)(u - 2)/2
4 6 s (u - 1)(u - 2)(u - 3)/6

a Nt
IPT is the number of initiations, propagations, and terminations

that occur for the full set of Shavitt loop shapes. The DO-loop indices
correspond to those in Figure 6.Nu,t is the number of times each set of
propagations occur at orbital levelu for the group oft-index Shavitt
loop shapes.

Θ(n) ) ∑
t)1

4

∑
u)1

n

âuNu,tNt
IPT (28)
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The simplest performance model is to assume thatâu ) â ∝
Nrow/n is the same for each orbital level. With this simple
assumption, the total effort is estimated by

For large orbital basis sets, the total effort with this assumption
is O (ân4). This is, of course, a very approximate model, but it
should be applicable in the general sense if no other information
about the Shavitt graph structure is available. In general, each
level of the Shavitt graph will have a different number of nodes
and node pairs, so the computational effort required for IPT
will vary from level to level. In the following, we discuss
specific examples of Shavitt graphs and the correspondingâu

factors. There are aboutn2/2 DMN elements andn4/8 dMN

elements that must be constructed. Accounting for the orbital
index symmetry, the computation of Tr(hDMN) requires about
n2/2 multiply-add operations, and Tr(gdMN) requires aboutn4/8
multiply-add operations to formHMN ) 〈M|Ĥ|N〉. With this
parametrization, the effort required to constructSMN ) 〈M|N〉
scales1 asO (ân). Thus, for large orbital basis sets and Shavitt
graphs with reasonably largeâu factors, we expect the overall
effort to be dominated by thedMN construction of the four-
index Shavitt loop shapes.

The timings in Table 2 show that our method is very efficient,
and it scales very well for increasing wave function expansion
length, compared to traditional CI approaches. The smaller
calculations in Table 2 were done both with traditional GUGA
CI procedures and with our new procedure, and all density
elements and energies were verified for correctness. For the
larger calculations which cannot be done with the current
capabilities of traditional CI methodology, an arbitrary set of
nonzero arc factors were chosen in order to generate the
necessary statistics and timings. For these full-CI wave func-
tions, the actual number of nodes in levelu is given byNrow(u)
) (m + 1)(m + 2)/2 form ) min(u, n - u); that is, the number
of nodes per level starts at 1 at level zero, increases to a
maximum at leveln/2, and then decreases back down to 1 at
level n. If we assume thatâu ∝ Nrow(u), then the total effort
may be modeled as

Thus, for thesen ) N full-CI wave functions, we see that the
effort to construct a Hamiltonian matrix element scales formally
asO (n6) for our procedure. With the appropriate overall scaling,
the above model agrees very well with the timings given in
Table 2. However, if the timings in Table 2 are fit to a general
fourth-order polynomial, the resulting agreement is also very
good. This suggests that the wave functions in Table 2 are not
large enough to observe the above predictedO (n6) asymptotic
scaling behavior.

Using traditional CI methodology, the effort to constructHMN

for the full-CI expansions in Table 2 scales asO (Ncsfn4); each
row of the Hamiltonian matrix in the CSF basis contains∼N2n2

nonzero elements, andwN ) ĤxN requires a multiply and add
operation for each nonzero element. The subsequent scalar
product HMN ) xM‚wN requires only O (Ncsf) additional
effort. The details of various efficient full-CI methods are
given in refs 19-22. As discussed in more detail in ref 1,
Ncsf ≈ (8‚4n)/(πn2) for largen for thesen ) N full-CI singlet
wave functions, which results in an overall scaling of about
O (n24n) to constructHMN using traditional CI methods. Our
method has much better scaling properties than the traditional
CI approach for the construction of a Hamiltonian matrix
element between two product functions. In fact, the results for
the largest expansions in the bottom half of Table 2 cannot,
practically speaking, be performed using traditional CI meth-
odology using current hardware technology. For example, Table
9 in ref 22 gives timings of 7928 s/iteration for ann ) N ) 14
calculation on the stilbene molecule (on an IBM SP3 with peak
CPU performance of 1.5 GFLOP/s). Almost all of this time is
the computation of thew ) Ĥx matrix-vector product. As seen
in Table 2, this time can be compared to 0.01 s using our
recursive algorithm with product functions (on a PowerMac G5
with peak CPU performance of 10 GFLOP/s). Using the above
operation count estimates, and ignoring the practical difficulties
of storing vectors of lengthNcsf > 1020, a rough estimate to
computeHMN for the n ) 46 row of Table 2 using traditional
CI technology is about 1.85‚1024 s (over one million times longer
than the age of the universe). In contrast, our timing results in
Table 2 show that only a modest effort of a few seconds is
required by our recursive algorithm for this Shavitt graph, which
corresponds to an expansion space ofNcsf ≈ 5.5‚1024, or over
9.2 mol of CSFs. (We note in passing that the CSF count given
in Table 9 in ref 22 is incorrect; the correct CSF count in Table
2 was used in the above extrapolation estimate.) This is, of
course, somewhat of an apples-to-oranges comparison, because
the traditional CI methodology allows for the computation of
the matrix-vector product and matrix elementHMN using
arbitrary CSF vectorsxM andxN, whereas our new method only
allows for vectorsxM andxN that may be represented in terms
of arc factors according to eq 3. Furthermore, these timings are
for only a single matrix elementHMN (which is analogous to a
subspace matrix element in a Davidson iterative procedure), and
at this time, we do not know how many of these matrix elements
will be required with our new method in order to compute
accurate energy values and wave functions. Nonetheless, the
dramatic differences in timings, storage, and overall effort
suggest the tremendous potential of our new method.

Consider a singlet full-CI wave function expansion in which
n > N. The Shavitt graph in this case begins at level 0 with a
single node and builds up to a maximum number of nodes at
level N/2. The number of nodes at this level is given by (N +
2)(N + 4)/8. Between levelsN/2 and (n - N/2), every level in
the Shavitt graph is repeated with the same (a, b) nodes, the
same node pairs, the same set of connecting segments in the
pair graph, and the same segment valuesW (Tu). (The segment
factorsFν,ν′

MN(Qu) would be different at each level because of the
arc factors.) Above level (n - N/2), the number of nodes per
level begins to decrease, down to one node at leveln. This
situation involving the repeated levels can be exploited by using
pointers at each level into a common set of segment values. In
this special case, the storage requirements for the segment values
would not increase for increasingn (with fixed N). Furthermore,
in this situation, theâu factor to propagate from level to level
does not change in the middle section of the Shavitt graph (âu

∝ N2/8), so the overall effort to computedMN, and alsoHMN,

Θ(n) ) â∑
t)1

4

∑
u)1

n

Nu,tNt
IPT

) â∑
u)1

n

[6 + 24(u - 1) + 27(u - 1)(u - 2)/2 +

(u - 1)(u - 2)(u - 3)]

) 1
4
â(n4 + 12n3 + 5n2 + 6n) (29)

Θ(n) ∝ ∑
t)1

4

∑
u)1

n

Nrow(u)Nu,tNt
IPT

) (13n6 + 300n5 + 1855n4 + 4140n3 + 3172n2 +
3120n)/1920 (30)
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would scale asO (N2n4). For fixedN, the effort would increase
only asO (n4) as orbitals are added. This scaling would apply,
for example, to the common situation in which a sequence of
increasingly accurate orbital basis sets is used for a given molec-
ular system in order to extrapolate to an infinite basis set limit.

Consider the application of the product function approach to
a MR-CI Shavitt graph. In this situation, the number of
electrons that occupy the external orbitals is constrained to some
maximum value. This constraint is achieved by deleting the
majority of nodes in the external orbital levels in order to limit
the cumulative occupancy of these orbitals. The external orbitals
are placed typically at the bottom of the Shavitt graph.5,6,16 In
the MR-CI(SD) case, for example, the external orbital levels
have up to 2 electrons, resulting in only the 4 nodes corre-
sponding to (a, b) pairs (0, 0), (0, 1), (0, 2), and (1, 0) (above
level 1 in the external space). According to Table 4, these 4
nodes result in 14 node pairs per level. The effort required to
propagate the segment factors within the external orbital space
is therefore constant (âu ∝ 14) and relatively small regardless
of the total number of electrons in the system. Increasing the
orbital basis size results in a procedure that scales only as
O (14n4). If the complexity of the external orbital space were
increased, for example, to allow up to 3 electrons in the external
orbital space for a MR-CI(SDT) expansion, then in addition
to the above 4 nodes there would also be nodes with (a, b)
pairs (0, 3) and (1, 1) at each level (above level 2), and these
6 nodes would result in 26 node pairs. The computational effort
would scale asO (26n4), and for a givenn, the effort would be
about (26/14) larger than for the MR-CI(SD) calculation. That
is, the MR-CI(SDT) HMN calculation would be expected to
cost about twice as much as the MR-CI(SD) calculation.
Allowing 4 electrons in the external space for a MR-CI(SDTQ)
expansion would require adding the nodes (0, 4), (1, 2), and
(2, 0) to each of the external orbital levels (above level 3), and
these 9 nodes result in 46 node pairs and an effort that would
scale asO (46n4); for a givenn, the total effort would be about
(46/26) larger than for the MR-CI(SDT) calculation, and it would
be about (46/14) larger than the MR-CI(SD) calculation. As
shown in Table 5, propagations occur at the top of the Shavitt
graph with this approach more often than the propagations near
the bottom of the Shavitt graph. Consequently, for MR-CI
Shavitt graphs, it would appear to be more efficient to place
the internal orbitals (which have more node pairs per level) at
the bottom of the Shavitt graph where propagations occur fewer
times and to place the external orbitals (which have fewer node
pairs per level) at the top where propagations occur more
frequently. Alternatively, the traditional orbital placement could
be chosen, but the recursive propagation procedure could be
performed from the top of the Shavitt graph down to the bottom.
These orbital ordering considerations apply also to other Shavitt
graphs in which different orbital occupation restrictions are
imposed on different orbital subsets. The impact of these kinds
of optimizations will be examined in the future.

All of the above timings and discussions of scaling with
respect to orbital basis and molecule size apply only to the
particular situation of the construction of a single Hamiltonian
matrix element with two product basis functions,HMN )
〈M|Ĥ|N〉. At this point, we do not know how difficult the
optimization will be to minimize the energy with respect to the
arc factors. This is a very nonlinear optimization problem, and
this could result in a difficult numerical procedure. This
optimization will be the focus of future effort, and it is expected
to share the efficient recursive technology that has been
developed in this work. We also have at this time only limited
experience1 with determining the number of product basis
functionsNR that will be required to achieve chemical accuracy

in global PES computations. The size ofNR will affect the total
number of HMN matrix elements that must be computed.
However, with the somewhat remarkable timings we see for
the computation of a singleHMN with this method, we feel that
the new method shows great promise even ifNR must be as
large as several dozen or several hundred.

As discussed in ref 1, we exploit point group symmetry in
this approach by introducing symmetry-dependent chaining
indices23 in the DRT representation of the Shavitt graph. This
is appropriate for point groups with one-dimensional irreducible
representations (irreps), specifically to theD2h point group and
its subgroups. This allows the upper and lower walks at each
node to be grouped by the irrep indexΓ. For the HMN

construction step, this requires propagation of separateV
products for eachΓ. If point group symmetry were ignored,
then only one set of products would be propagated. Therefore,
the use of point group symmetry increases the cost of the
calculation by approximately a factor ofh, the number of irreps
in the point group. In contrast, the use of point group symmetry
in traditional CI approaches results in significant reductions in
the effort (various parts of the effort and storage requirements
are reduced by factors ofh to h3) to compute a matrix-vector
product. Even with this cost increase, there are still two major
advantages to using point group symmetry with our new method.
The first is that it eliminates any unwanted symmetry contami-
nation from the computed wave functions and the energy and
property values. This simplifies several aspects of the calculation
of potential energy surfaces and molecular properties. The
second is that theHMN elements for severalΓ may be computed
with relatively little additional effort beyond that required for a
single irrep. In traditional CI approaches, the calculation of each
irrep involves basically an entirely new calculation, with
relatively little shared effort between the separate calculations.
With our approach, a single set of propagations results in allh
HMN

Γ elements. This simplifies several types of calculations,
including the simultaneous computation of several ground and
excited states of severalΓ and the computation of state-averaged
energies and properties in which the computed energy or
property is a weighted average, with arbitrary user-specified
weights, over several individual states. Furthermore, it is
straightforward with this approach to compute transition density
matricesDMN anddMN for arbitraryΓM andΓN. This allows the
computation of transition properties, such as transition dipole
moments which may be used for the computation of spectral
amplitudes.

4. Conclusions

An efficient procedure has been presented to compute
Hamiltonian matrix elements and reduced one- and two-particle
density matrices for electronic wave functions using a new
graphical-based nonlinear expansion form. The wave functions
computed with this method are spin eigenfunctions and may
be chosen to belong to pure irreducible representations (for the
D2h point group and its subgroups). Wave functions in this
approach are expanded in a product function basis, and each
product basis function depends, in a nonlinear way, on a
relatively small number of variational parameters. In general,
the effort required to construct an individual Hamiltonian matrix
element between two product basis functionsHMN ) 〈M|Ĥ|N〉
scales asO (ân4) for a wave function expanded inn molecular
orbitals. The prefactorâ itself scales betweenN0 andN2, for N
electrons depending on the complexity of the underlying Shavitt
graph. In previous work, the computation of the corresponding
overlap matrix elementSMN ) 〈M|N〉 was shown to require effort
proportional toO (ân). There is no component of the effort or
of the storage requirements for this matrix element construction
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procedure that is proportional toNcsf. These matrix elements
allow for the computations of ground and excited electronic
states. Timings with our initial implementation of this method
are very promising. Wave function expansions that are orders
of magnitude larger than can be treated with traditional CI
methods require only modest effort with our new method.
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Appendix

In this appendix, we discuss the computation of the reduced
transition density matricesDMN anddMN which are used in the
construction of the Hamiltonian matrix elementHMN ) 〈M|Ĥ|N〉.
In section 2, the recursive nature of this construction process
for product basis functions|M〉 and |N〉 was exposed. In this
appendix, we discuss further details of our initial implementa-
tion, directed primarily toward readers interested in implement-
ing this method or in modifying an existing implementation.

We examine first the underlying data structures we use to
carry out the algorithm outlined in Figure 6. This is based on
the auxiliary pair graph introduced in section 2. The first step
is the determination of the list of node pairs according to Table
4 and the determination of the edges (connecting segments)
according to Table 3. Given this representation of the pair graph,
we next consider two different choices to compute the segment
factorsFν,ν′

MN(Qu). The first consists of looping over the vertices
of the pair graph at levelu, indexing the edge links from each
vertex that correspond to segmentTu, and performing a table
lookup based ondbra, dket, bbra, andbket to access the appropriate
segment valueW (Tu). This segment value is then combined
with the arc factors to formFν,ν′

MN(Qu), and the contribution is
accumulated into the appropriateVν

u+1 node-pair value accord-
ing to eq 25. The second choice24 consists of precomputing all
possible segment values for each segmentTu at all levelsu.
These segment values are grouped by level so that they can be
accessed simply, with minimal overhead, during theV propaga-
tion. The propagation step then consists of the segment value
lookup, multiplication by the arc factors to form the segment
factor Fν,ν′

MN(Qu), and accumulation intoVν
u+1. The first algo-

rithm has the advantage of smaller lookup tables and smaller
memory requirements, whereas the second algorithm has the
advantage of a simpler innermost DO-loop structure. Also, the
second algorithm has the advantage that only nonzero segment
values need to be saved, whereas the first algorithm includes
lookups of a small fraction of zero segment values (which are
tested and ignored). There are 28 segment value types in our
implementation; these are grouped according to the∆N at the
top of the segment and enumerated in Table 3. Table 2 shows
the total number of segment values for a selection of Shavitt
graphs. It is clear from this table that the total number of segment
values is modest even for the largest wave function expansions,
so this is the algorithm that has been used for the timings in
Table 2. Future work will focus on other efficient methods to
propagate theV array values. For example, if the node-pair
vertices are ordered appropriately, the sparse matrix-vector
product in our current formulation of eq 27 might be replaced
with dense-subblocked or dense-banded matrix-vector products,
allowing for higher computational efficiency for the same, or
almost the same, total arithmetic operation count.

After the segment value tables are computed, the transition
density matrix elements may be computed using the procedure

outlined in Figure 6. It might appear that we would need more
than 24 node-pair value arraysV, one or two for each Shavitt
loop shape in Figure 2. In our implementation, only six node-
pair value arrays are required. This is due to four different
reasons. First, most of the propagation steps are shared by
several different Shavitt loop shapes. For example, the lower-
level initiation and propagation of the (RR...) segment factor
products is shared by the loop shapes (1ab), (3ab), (6ab), (7),
(8ab), (10), and (12bc). Instead of propagating 12 equivalent
sets of values (or 17 sets, if thex ) 0, 1 sets are counted
separately), only one set is propagated over the range of common
orbital levels.

Second, of the distinct shapes that are propagated, many of
them correspond to node pairs with different∆N values, and
they therefore occupy different elements if stored in the same
V array. At the lowest orbital level p, only six sets of unique
loop values are initiated. These correspond to segment shapes
L (stored in∆N ) -1 node-pair entries),W andRL1 (in ∆N )
0 node pairs),R andRW(in ∆N ) +1 node pairs), andRR0 (in
∆N ) +2 node pairs). These values require only two sets of
node-pair arraysV because the∆N labels are distinct except
for the two conflicting cases. As the values are propagated from
one level to the next, they are forked and merged as appropriate,
and the maximum number of∆N conflicts at any level in our
procedure is six, which results in the requirement for that number
of node-pair arraysV.

The third reason that relatively few node-pair value arrays
are needed is that some of the individual Shavitt loop propaga-
tions can be combined before the loop head is reached. This
occurs for (1a)-(2a), (1b)-(3b), and (2b)-(3a) pairs of loop
shapes. For example, loop shapes (1a) and (2a) correspond to
the operatorsêpqrs and êqprs, respectively. Both of these loop
shapes contribute to the same density matrix elementdpqrs

MN . In
the procedure outlined above, these two contributions could be
propagated individually, and the results combined when the loop
shapes are terminated at levels. However, between levelsr and
s, both of the propagations would invoke exactly the same
Fν,ν′

MN(R) andFν,ν′
MN(Rh)γjh

MN factors and exactly the same node-pair
indices. Therefore, it is possible to combine the node-pair values
at level r and then to propagate only a single set of node-pair
values for the combined (1a) + (2a) contribution. The same
early combination can be applied to the loop shapes (1b) +
(3b) and to loop shapes (2b) + (3a). Consequently, in the
innermost DO loops of the procedure, only three sets of node-
pair values need to be propagated rather than six sets, reducing
the corresponding computational effort and storage requirements
by a factor of one-half.

The fourth reason that only relatively few node value arrays
are required is due to the treatment of thex ) 0 andx ) 1
spin-recoupled components6,8,11 of the two-particle operators.
In general, we haveepqrs ) epqrs

0 + epqrs
1 , and we use the

identities

to reduce the number of values that must be propagated. Be-
cause these are general operator identities, they hold also for
〈m̃|epqrs

x |ñ〉 matrix elements over primitive CSFs and for the
〈M|epqrs

x |N〉 linear combinations. For example, we propagate
only thex ) 0 components of loop shape (3a), only thex ) 1
component of loop shape (3b), and the sum and difference of
these two values are the loop values of interest that form the

epsqr
0 ) eprqs

0

epsqr
1 ) -eprqs

1

epsrq
0 ) -1

2
epqrs

0 ) -1
2

epqrs} for p, q< r, s (31)
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density matrix elements. This means that only two sets of values
need to be propagated for these two loop shapes rather than
four sets, halving both the computational effort and the storage
requirements for these loop shapes. These operator identities
are used to reduce the computational effort and storage
requirements for loop shapes (1ab), (2ab), (3ab), (4ab), (8ab),
and (11ab). The final result is that only one contribution is
required from each of the loop shapes in Figure 2.

Figure 2 is based on Figure 8 in ref 6, but there are a few
minor differences. Instead of associating a Hamiltonian integral
with each loop shape as in ref 6, Figure 2 shows the density
matrix element to which it contributes along with the coefficient
that results from the symmetrization in eq 9. In our current
procedure, loop shape (9) is not computed at all, since it is
equivalent to the bra-ket interchange of loop shape (8b) if all
possible upper-loop segments are allowed (i.e., without upper-
triangle restrictions imposed). Loop shape (7) in Figure 2 is
the bra-ket interchanged form of the corresponding loop in
ref 6; this interchange allows the lower range propagation to
be shared with loop shapes (1ab) (and (3ab), (6ab), (8ab), etc.).
We compute the loop shape (14ab) contributions,dpppp

MN and
Dpp

MN, using the procedure described in ref 1. This is because
these single-level loop shapes require no propagation, and the
fact that the initiation and termination occur logically at the
same level makes these density contributions somewhat of a
special case. To be consistent with the procedure outlined in
Figure 6, all three-index loop shapes are labeledp, q, and r,
and all two-index shapes are labeledp andq. As seen in Figure
6, all four-index loop shapes, which are grouped together in
Figure 2, are terminated at the same point in the procedure, all
three-index shapes are terminated at the same point, and all two-
index shapes are terminated at the same point. Except for these
minor changes in notation and indexing conventions, the loop
shapes in Figure 2 correspond directly to those in ref 6.

For the various Shavitt loop contributions, there are several
ways to compute the final density contributions. For example,
instead of loop shapes (2ab) as shown in Figure 2, which
correspond to an upper-triangle loop contribution, it is possible
to compute the bra-ket interchanged version, which corresponds
to the equivalent lower-triangle loop contribution. The segment
types for the (2a)T loop, for example, would be, from bottom
to top, (R, R, R, D, L, L, L), and the (2b)T segment types would
be (R, R, R, RL, RL, RhL, L, Lh). Computing the contributions
from these loops in this way eliminates entirely the need to
propagate the two sets of node-pair values corresponding to (L,
L, ...) because these segment values are not shared by any other
loop shape. Computing (2ab)T reduces the propagation effort
within thep, q,andr DO loops of the procedure, and it reduces
the number of necessary value arraysV from six to five, but it
appears to eliminate the possibility of the early combination at
level r of these node-pair values with the loop shape (1a) and
(3a) terms, because these latter terms require (...R, Rh)
propagation up to levels whereas the transposed (2ab)T terms
require (...L, Lh) propagation. This increases the effort within
the innermosts loop because five sets of values must be
propagated rather than three. We have computed the density
elements both ways, and we find that for the calculations in
Table 2, the (2ab)T loop propagation results in slightly less total

effort for n e 12, whereas the (2ab) loop propagation, which
allows for the early combination, results in less effort forn >
12. However, another possibility exists which combines the
advantages of both approaches. This consists of propagating
(2ab)T up to levelr and then interchanging the bra-ket values
with the ket-bra values. These interchanged values are identical
to those that would have been computed if (2ab) loop propaga-
tions had occurred. This is a consequence of the symmetric
segment value convention6,11 for which W (T†

u) ) W (Tu) with
T†

u(dbra, dket, bbra, bket; Qu) ) Tu(dket, dbra, bket, bbra; Q†
u). These

interchanged values can be combined early at levelr with the
(1a) and (3a) terms, and the remaining propagations require
only threeV arrays within the innermosts loop. These and other
similar optimization possibilities will be explored in the future.
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