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An efficient procedure to compute Hamiltonian matrix elements and reduced one- and two-particle density
matrices for electronic wave functions using a new graphical-based nonlinear expansion form is presented.
This method is based on spin eigenfunctions using the graphical unitary group approach (GUGA), and the
wave function is expanded in a basis of product functions (each of which is equivalent to some linear
combination of all of the configuration state functions), allowing application to closed- and open-shell systems
and to ground and excited electronic states. In general, the effort required to construct an individual Hamiltonian
matrix element between two product basis functibtys, = IM|H|NOscales as? (8n*) for a wave function
expanded im molecular orbitals. The prefactgritself scales betweelN® andN?, for N electrons, depending

on the complexity of the underlying Shavitt graph. Timings with our initial implementation of this method
are very promising. Wave function expansions that are orders of magnitude larger than can be treated with
traditional Cl methods require only modest effort with our new method.

1. Introduction corresponds to an integer triplg,(b;, ¢;) of a row of aPaldus
ABC tablealP~1! These integers are related to the number of
orbitals n;, the number of electronl;, and the spin quantum
number§ according to

In previous workt we introduced a computational method
based on a new expansion basis form for electronic wave
functions. This method is based on the graphical unitary group

approach (GUGA) of Shavif;® which utilizes a graphical N,=2a +b,
representation of the unitary group approach (UGA) of P&tdiis. ! !
This new approach is intended to be used in MCSE€R4and S =b/2

i

configuration interactiotr! (Cl) wave functions, and it is being
developed within the COLUMBUS Program Systétn!6 the
main emphasis of which is the accurate computation of global

potential energy surfaces of ground and excited states. The wave . & soin ei .
function is expanded in a basis of product functions, and each Each nodg thereby corresponds to &t spin eigenfunction

product function depends on a relatively small number of with eigenvalue§(§ + 1), to a specific number of electrons
nonlinear parameters but is equivalent to some linear combina-Ni» @nd to a subspace of the orbitals of dimensipnThe
tion of all the configuration state functions (CSFs). In the |nd|V|duaI.orb|taIs porre;pond to verucgl Ievels in the graph.
previous work, we developed recursive procedures to compute | "€ Shavitt graph is a directed graph with a sirigié(source)
efficiently the overlap (scalar product) between two product node, located at a fictitious level O corresponding to the physical

basis functionsSyn = [M|N In the present work, we extend ~ Yacuum, and a singleead (sink) at the h_ighest level corre-
that same recursive approach to efficiently compute Hamiltonian sponding to thé\ andS of the molecule of interest. The nodes
matrix elementsiyy = IM|H|NL] transition one-particle reduced f;;[ ongllevelta}re clonrjricted WIH1::CS (or Ste%% to ;[he nodebs at that

. ; MN " ot ) e adjacent levels. There are four possible step numbers tha
density matr.lx elemgntﬁ)pq ' andNtransmon two partlclg.re connect the nodes, denoted by the integevith 0 < d < 3.
duced density matrix elementjg'qrs_ From these quantities, The changes of thé various quantities associated with each of
ground and excited electronic state energies may be computeqhese stepgs are summarized ﬁl’l Table 1. Each node in the Shavitt
along with the expectation values of other arbitrary one- and - .
two-glectron opefators. In general, the effort rgquired to g_raph Is connected to between one and four nodes at the next
construct an individual Hamiltonian matrix element between higher I(favelhand_lto ﬁ.n?] tho four andeS at the ne;l(t Ihower Ier\]/_elh
two product basis functionsiuy = IM|H|NCscales as? (8n) (except or the tail, which has no lower arcs, and the head, whic

i has no higher arcs).

for a wave function expanded |:)1 molegular orbitals. The Each CSF corresponds to a walk from the graph tail to the
prefactorf itself scales betweeN® and N2, for N electrons, . .
graph head. This walk touches one node at each level, and it

depending on the complexity of the underlying Shavitt graph. touches only the single arc at each level that connects the node

2 Method below it to the node above_ itin Fhat walk. A CSF can the_reby
) be represented by denoting either the set of nodes in the
We summarize briefly the method and notation that was corresponding walk or by denoting the sequence of steps (the
introduced in ref 1. Eachode indexed byj, of a Shaiitt graph stepvecton) in that walk. In a typical Shavitt graph, an individual
node may be touched by many walks, so it is convenient to
* shepard@tcg.anl.gov. organize the graph on the basis of storage of the nodes; the
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TABLE 1: Characterization of Step Numbers? essential variabléss given byN, = Nac — Nrow + 1 where
d Aag Abyg Acy ANy AS Narc andNyow are the number of arcs and nodes, respectively, in
the Shavitt graph. Table 2 shows the relation betwégnNow,
0 0 0 1 0 0 . .
1 0 1 0 1 41, andN,, for a set of S_hawtt graphs that correspond to singlet
2 1 -1 1 1 —1, full-Cl calculations withn = N ranging fromn = 2 ton = 46.
3 1 0 0 2 0 The goal of the product function approach is to make as much

as possible of the effort that is related to wave function
manipulation, interpretation, optimization, and storage depend

storage of the connecting arcs, and other information discussedon Nrov_v rather than the mu_ch Iargc_ar f_lummr{sf- _

below associated with that node, is calledistinct row table A single product function|MOis itself equivalent to a
(DRT). Each CSF may be assigned a contiguous integer indexcomplicated linear combination of CSFs, and it is capable of
mwith 1 < m < Ngsswhich may be computed as a summation describing molecular bond dissociation processes, spin recou-

of the integerarc weightsthat are associated with the arcs. ~ Pling, and electron correlation, and it has other interesting
featurest A single product function has sufficient flexibility,

n-1 n-1 through its associated arc factors, to cover the entire set of CSFs
m=1+ Z}ydap =1+ Z}yﬂ(p) (2) within the underlying linear expansion spdddowever, a single
p= p= product function cannot represent an arbitrary vector (i.e., an

. . . arbitrary linear combination of CSFs) within that space. To allow
We adopt the convention thfis the node index of the bottom ¢4 aqditional flexibility, we define a general linear combination
of the arc in the walk of interest at levp] anddj is the step wave function as

number associated with the arc. In this way, the pair of indices

aAX = Xpr1 — X for x = a, b, ¢, N andS at levelp.

(d, j) specify an arc. In the following, it is sometimes convenient No,
to denote aq, j) pair by a single arc index, andu(p) in eq 2 lyO= ;CWMD (5)
is the arc at levep in the walk. From the information stored in

the DRT, it is straightforward to construct the step vector from ) ) ) )
a given CSF indexn, or to do the reverse and determine the N which theN, product functiongMCform an expansion basis.
integer CSF indexn from a given step vector. The' qptlmlzatlon of the Imear expansion coefficierdsto

In aproduct basis functiora numericabre factoris assigned ~ Minimize the energy expectation value takes the form of a
to each of the arcs in a given Shavitt graph. These arc factorsgeneralized symmetric eigenvalue equation
are denoted individually asg where, analogous to thg; Hc = S&E ©6)
notation of the arc weights given aboyeis the index of the
node at the bottom of the arc ands the step number of the  with Hyy = M|A|NOand Syx = M|NO In this approachH
arc. The CSF coefficient,, associated with a particular walk and S are rough|y ana]ogous to the Corresponding subspace
mis taken as the product of the arc factors in that walk. That matrices in a Lanczos or Davidson type of iterative procédure

is, in analogy to eq 2 used commonly in traditional CI approaches. The efficient
1 1 computation of the metric matri§ has been described previ-
. . ously} this is achieved using a recursive procedure with effort
Xm = Fl)jladp.njp‘m_ Ilaﬂ(pym) ®) that scales adN,w and that does not depend s The

computation of the Hamiltonian matrix in the product function
Because one arc factor is associated with each orbital level inPasis is the subject of the present work, and we seek a similar

this product, there are always exaatlgre factors that contribute ~ '€cursive algorithm with effort that does not dependhos.
to each of the CSF coefficients. A product basis function, Through the Ritz variational principle, the lowest eigenvalues

denoted|M0J is then defined in terms of these CSfsJand computed from the product function basis in eq 6 are upper
their coefficientsg""n as bounds to the corresponding eigenvalues of the underlying linear

CSF expansion space, which in turn are upper bounds to the

Nesf exact full-Cl eigenvalues. Consequently, this general approach
ME= S MmO (4) is applicable to both ground and excited electronic states. As
,T; the expansion seéfl, increases, the eigenvalues from eq 6 are

bounded from below only by the eigenvalues of the underlying
and thus corresponds to a particular linear combination of all CSF spacéthat is, the linear combination product function form
the CSFs in the linear expansion basis. The product function does not represent an inherent formal limitation on the accuracy
[MUs a linear combination of spin eigenfunctions; therefore, it of the computed wave function. The wave functigplis a
also is an eigenfunction &. There can be several sets of arc  spin eigenfunction because the product basis functiktisare
factors, each of which is associated with a corresponding producteigenfunctions of%; therefore, our method does not suffer from
function through egs 3 and 4. The mapping of a set of arc factors spin contamination or spin instabilities.

to the vector of CSF coefficients will be denotedd{s=_/(aM). If xM = _(aM) and xN = (aN) are the vectors of CSF
This is a many-to-one mapping, because more than one set ofcoefficients of the product functions defined @Y anda™, then
arc factorso. map to the same CSF coefficient vectorThis Hun = XMYTHXN (whereH is the Hamiltonian matrix in the

lack of uniqueness may be eliminatday introducing an arc CSF basis) is the matrix element of interest. One way to compute
phase and normalization convention based on the lower walk this quantity would be to construct the vector¥ and xN
partial product functionghat are associated with each node of explicitly, and to compute the matrixvector and scalar products
the Shavitt graph. A set of arc factord” that satisfy this directly from these expanded vectors using traditional ClI
normalization convention is istandard form and such a set  technology. Our approach discussed below requires both less
of arc factors may be characterized by a smaller number of computational effort and less storage for large expansions than
essential variational parametegg. The number of these  this straightforward approach.
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TABLE 2: Statistics for Singlet Full-Cl Wave Function Expansions
n=N Nest Nrow N(p Npaira Nvallueb time®
2 3 5 2 10 26 0.00
4 20 14 13 43 278 0.00
6 175 30 39 120 1058 0.00
8 1764 55 86 261 2682 0.00
10 19 404 91 160 486 5466 0.00
12 226 512 140 267 815 9726 0.00
14 2760615 204 413 1268 15778 0.01
16 34 763 300 285 604 1865 23938 0.04
18 449 141 836 385 846 2626 34522 0.07
20 5924 217 936 506 1145 3571 47846 0.13
22 79 483 257 308 650 1507 4720 64226 0.21
24 1081 724 803 600 819 1938 6093 83978 0.34
26 14 901 311 070 000 1015 2444 7710 107418 0.54
28 207 426 250 094 400 1240 3031 9591 134862 0.82
30 2913690 606 794 775 1496 3705 11756 166626 1.21
32 41 255 439 318 353 700 1785 4472 14225 203026 1.75
34 588 272 005 095 043 500 2109 5338 17018 244378 2.49
36 8441 132 926 294 530 000 2470 6309 20115 290998 3.46
38 121 805548 126 430 067 900 2870 7391 23656 343202 4.66
40 1766 594 752 418 700 032 400 3311 8590 27541 401306 6.27
42 25739 723 541 439 406 257 200 3795 9912 31830 465626 8.25
44 376 607 675 256 599 252 232 000 4324 11363 36543
46 5531 425 230 331 301 517 157 500

536478 11.19
4900 12949 41700 614178 14.43
@ Npair is the total number of pairs of nodes in the Shavitt graph (that contribute to upper-triangular Shavitt loops) and the number of vertices in

the auxiliary pair graph? Nvaue is the total number of segment valuédimes are in seconds on a 2.5 GHz PowerMac G5 (PPC 970) to construct
a singleM|H|NOmatrix element involving two product functiorisOand [NL]

A Hamiltonian matrix element in the product function basis integrals (i.e.npq = Ngp, Yoqrs = Jpgsn @ANAYpqrs = Grspq With all
may be written using standard GUGA notation as guantities assumed to be real), we may choose to use in eq 8
Hyn = M[AIND

the symmetrized one- and two-particle transition density ma-
trices, which are defined as

= Xm X\ | H A0
mn

1 1
MN __ M N = - ~ - -
Dpq = mznxm X 0| Epg + Eqpl 0= 5[M|qu + EgpIND

,a.r,S

> Xm X > hogBIE T Y oo IE, |ﬁt) (7)
Z 2 by Py 2, bars qrs dl';"q"r‘szzr zxm x":‘l]‘h|épqrs+ & sr T Eqprs T Egpsd I
mn
hpg @andgpgrs are the one- and two-electron Hamiltonian integrals
indexed by the molecular orbital indices g, r, ands. The
operatorskpg and &yqs = EpqErs — OrqEps are the generators
and the normal-order generator products. The matrix elements
(| Epgl ACaNd [ &y iCAre the one- and two-electron coupling
coefficients, and in traditional MCSCF and CI approachésg,
these are the primary quantities of interest in computing matrix
vector products. The commutation relatideyd,Ers] = rqEps
— OpsErq results in the operator identiygrs = &spg

= Z[Mlépqrs + épqsr+ éqprs + éqpsr|N[j )

These expressions define the normalization and indexing
conventions of the density matrices in this work (see also refs
13 and 18). The adjoint operator identif, = E{, results in
the identitiesDMN = DM anddYN = d"M, Given the one- and

two-particle transition density matrix elements, it is straight-
In the current approach, we write the Hamiltonian matrix forward to combine these quantities with the appropriate
clement as PP ’ Hamiltonian integrals to compute the matrix elemidgt,. Given
the expansion coefficients for two staigsCand|y;from eqs
P 5 and 6, the state transition density matrices may be computed
HMN = zhpq(zxm Xr':‘m]l qu|n|J + as
P9 mn
1
M Nemia 1
- Tij) i N _ £ A I J AMN
5 pqz,sgpq’émznxm X [/ &q,4 D) Die = 511 + By %CM c DM
h MIE N M|, JNO 1
= — g _ A PN N A I J 4qMN
% Pq | pq| 2 p’qZ’Sgpqu |epqrs| dpqrs_ Z@”epqrs_'_ epqsr+ eqprs+ eqpsrl wJDZ %CM Cn dpqrs
1 T«
_ MN MN
- thquq +£ z Gpqroars
P.a P.aT.S

From these quantities, arbitrary expectation valulies {) and
transition properties|(= J) may be computed. Thus, the
transition reduced density matricB&N anddN in the product

(®) function basis are the fundamental quantities in this approach.
We now focus on the efficient computation of these reduced
Because of the index symmetry of the one- and two-electron density elements.

= Tr(hD™) + 2 Tr(gd™



Electronic Wave Function Computations J. Phys. Chem. A, Vol. 110, No. 28, 2008383

Level TABLE 3: Segment Shapes Categorized by Occupation
S graph head n T Change® g P ? g P
Segment upper walk o AAN (dbra, Oker) AN, segment value types
Type _
~ «<— loop head h q 00 -2 (0,3) -1 L
R 0 RR
¢l 0000
R -1 (2,3),(1,3),(0,2),(0,1) -1 L
loop ©000 0 RWRRL
R +1 RR,RR
» 0000
0 (3,3,22),(21),(1,2), -1 L
N P 00 (1,1),(0,0) 0 w, ww RL:RLE, RLY, RLE
<’;‘|qu|ﬁ) lower walk fo) +1 R' WR BR

+2 RR,RR
0

I 1

AN=0 ANet1 +1 (3,2),(3,1),(2,0),(1,0) 0L, RL B
+1 R RWRL

Shavitt Graph Auxiliary Pair Graph +2 ERT RR
Figure 1. The graphical representation is shown for two wali&] o
and [illand the associated coupling coefficiéfit Eyq|fil] The repre- +t2 (3.0 +2 RR
sentation on the left is the Shavitt graph, and the representation on the  2AN = Npa — Neet AAN = AN, — AN,—1. ® The superscripts
right is the auxiliary pair graph. In the Shavitt graph, the bra walk correspond to the& = 0 or x = 1 spin recoupling index.
is represented with the dotted lines, and the|Réts represented with ) )
the solid lines. The two walks coincide in the lower walk region between Sequence ofegmentswhich are the bra and ket steps at a given
the graph tail and the loop tail and they coincide in the upper walk  level within the loop. The 16 possiblsegment shapeghe
region between the loop heddand the graph head. The coupling combinations of the 4 bra steps and 4 ket steps) are listed in
coefficient depends only on the middle section where the walks differ, Tgple 3. The coupling coefficient value may be computed as a
which constitutes the Shavitt loop, and its value is the product of the product of segmentualues (or in some cases as a linear

segment values within the loop range. In the pair graph, each vertex S s .
corresponds to a pair of nodes at the same level in the Shavitt graph,COMPination of 2 such products); this property is important to

and the bra and ket walk pair in the Shavitt graph is represented as athe present method. Figure 2 shows schematically all of the

single path in the node-pair graph. Each edge in the node-pair graphunique loop shapes that are used in our procedure. This figure

corresponds to a segment of the Shavitt graph, which in turn consistsis based on Figure 8 in ref 6. The schematic segments that are
of the bra arc and ket arc pair that connects the bra and ket nodes alshown are indicative only of the occupation difference between
one Ievel_to the bra and ket nodes at the next higher Ieve'l. Thg VerticeSio ra and the ket segments of the loop, not of specific actual

of the pair graph are grouped according to the occupation difference : .

AN = Noga — Near segment shapes. The segment value types associated with each
level of each loop shape are indicated next to the loop diagram
in Figure 2. The bra branch of each loop shape is indicated

In the GUGA approach, coupling coefficients are computed with a dotted line, and the ket branch is indicated with a solid
from Shaiitt loops See Figure 1 for an example of a Shavitt line. If the bra and ket branches are exactly the same over some
loop and its corresponding one-particle coupling coefficient. orbital range, then a single line is shown in the loop shape figure

CSFs|mand |fildlcorrespond to two walks from the tail to the with a D (diagonal) segment value type (which is shorthand

head of the Shavitt graph. In general, there is a common sectionfor the segment typ&LY). If the bra and ket branches are not

at the bottom of the graph in which the two walks share the necessarily exactly the same, but rather corresportNie= 0

same arcs and nodes, there is a middle section in which theandAAN = 0 (see Table 3), then the bra and ket branches are

two walks differ, and there is a common section at the top of drawn close together but are distinct.

the graph where the two walks again share the same arcs and Given a Shavitt loopl' and its loop value7/’(T), the upper

nodes. The middle section is called the Shavitt loop, the bottom and lower walks are then generated only in order to determine

section is called théower walk of the Shavitt loop, and the  the set of CSF indicem and n which share that loop value.
upper section is called thepper walkof the Shavitt loop. The That is, | qu|ﬁD= 7/(T) (or IN|&qd A= 77(T), as appropri-

node at the top of the Shavitt loop at legedenotecd in Figure ate) for all CSFsm and n associated with that Shavitt loop.
1, is called thdoop head and the node at the bottom of the Figure 3 outlines the traditional GUGA procedure for the direct
Shavitt loop at level — 1), denoted, is called thdoop tail. computation of the contributions from a single Shavitt loop to

One of the important features of the GUGA approach is that a matrix-vector productw = Hx in the CSF basis. The
the coupling coefficient value depends only on the Shavitt loop difference tn — n) of these walk indices depends only on the
and does not depend on the upper and lower walks, even inarc weights of the Shavitt loop and is therefore the same for all
situations in which those partial walks contain singly or doubly possible upper and lower walks. Furthermore, given, for
occupied orbitals. For the typical Shavitt graphs that occur in example, a set of arc weights computed with a forward lexical
MCSCF and CI calculations, there are relatively few Shavitt scheme, all of the lower walks associated with a given upper
loops, out of the very large total number possible, that have walk will occur within a contiguous sequence of index values,
nonzero loop values. In traditional Cl approaches based onthe number of which is théower walk node weightx. The
GUGA, the emphasis is therefore focused on the efficient total contributions to a Hamiltonian matrix in the CSF basis,
construction of the individual Shavitt loops that have nonzero from a particular Shavitt loop, therefore consists of a number
loop values and on the efficient organization of this loop of codiagonal sequences of equal value and all of lergtind
construction, so that the computed coupling coefficients can bethe number of these contiguous sequences isuiper walk
combined efficiently with the corresponding one- and two- node weightx The total number of matrix contributions from
electron Hamiltonian integrals. A Shavitt loop consists of a a particular Shavitt loop is given by the produxig), and this
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Level (la) (1b) (2a) (2b) (3a) (3b)
s 1 R I \R N N N N
1 1 1 1 1 1
1 1 1 1 1 1
] ] ] ] ] ]
1 1 1 1 1 1
. ! ! : R : R i R E R
|k N2 i N N
Y AY 1 1
D RL E RR E RR
] ]
1 N7 “\RL RR RR
\: \: \\' \\I
L 'L ' R i R
P ! ! \ \
'L 'L IR NS
! U AN N

dpare — (M8, [N) iy  5(M|2,,,|N) dpg,  3(M |2, |N) dprye — 5(M|2,,,|N) dyry;  5(M e

IN) dpq < 3(M |, [N)

prgs

(4a) (4b)

(6b)

]
[}
}
|
[}
}
|
[}
|
)
|
}
)
|
|
]
|
~

q
R
p <
RL S~ |RR
dpp, —(M|E,,, INYdg —3(M|&,IN) dpgy < 3(M|E,,, IN) dpe (M|, |N) dpge,  5(M |, IN) dpes,  3(M|E,,,|N)
, (8a) (8b) 9) (10)
J— J— ] J—
RL RL ' R
) A !
! '
! ) RR (11a)
q ! .
i \RL ~RL RR
: N \\
] 1
' R L i R D
p ! N
R L IR w
\\
iy —(M|e,.|N) dfs « 3(M|e,. |N) dit. « 3(M|e,,|N) dim. < 3(M|e,,.|N dye —(M|e, IN) db «—1(M|é, N
g (12a) (12b) (12¢) (13)
i i
1 1
] ]
1 1
! ! R RR (14a) (14b)
1 1
4 S "
N e Wl SN N\
af «—(M|e,, |N) dy —(M|e, |N) DWW (—(M|EN|N) b —3(Mle,  IN)| | 4, (M|, |N)D) <—(M|12"W|N)

Figure 2. The list of unique Shavitt loop shapes used to construct the full set of density matrix elements. The coefficients of each of the Shavitt
loop values along with the density matrix indices are given below the loop shape. The segment value types at each level are written to the right of
the loop shape diagram. The loop shapes are grouped according to the number of distinct orbital indices.

product satisfiesxX,) < Ncst In the construction of a Hamil-
tonian matrix-vector product, each Shavitt loop therefore is
associated with X(x,) arithmetic operations, a multiply and an
add for each combination of CSF indicesandn.

contribution to the other half of the (symmetric) Hamiltonian
matrix; in this case, each (nondiagonal) Shavitt loop is associated
with 4 (xX») arithmetic operations in a matrbvector product
operation. It is only these distinct loop shapes that are shown
In a typical implementation of this approach, only Shavitt in Figure 2. If a reverse lexical index scheme is used to
loops that contribute to the upper triangle of the Hamiltonian determine the arc weights, then the above comments still apply,
matrix in the CSF basis are constructed explicitly, and the bra but the roles of the upper and lower walks are reversed and the
and ket CSF indices are interchanged in order to generate theupper/lower triangle designation of the individual loop shapes
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B=GAT) - hyy) or B= D) - Epas) in such a way that they can be indexed by orbital level and by
DO upper = 1,, ! loop over upper walks AN; other than this grouping, we impose in our initial
implementation no further ordering of the node pairs. This set

Comput d n, for thi 1k . . ; > :
QTIPS i, NG 1, TOL TS Tipper wa of node pairs defines the vertices of the auxiliary pair graph.

DOlower=1,z ! loop over lower walks The next step of the pair graph construction consists of
m =m, + lower enumerating all possible segments that connect node pairs at
n=n,+ lower one level to the node pairs at the next higher level. These

segments are specific instances of the segment shapes enumer-
ated in Table 3. The connection between two vertices of the
ENDDO i : . . X

pair graph will be called aadge Thus, in the present discussion,

_ ENDDO - o N the Shavitt graph consists of nodes connected by arcs, whereas

Figure 3. Outline ofw = Hx in the CSF basis with the traditional e pair graph consists of vertices connected by edges
GUGA approach. This is the contribution from a single Shavitt loop . . "
value 7//(T). The same upper and lower walk structure applies to both . Th_e aUXIIIary_paIr_graph d_oes not_ rep!ace _the_ Shavitt graph

in this formulation; in fact, it contains, in principle, no new

one-electron and two-electron Hamiltonian integral contributions. ! - e T
information. Rather, it simplifies the conceptual treatment of

w,=w,+f-x,

TABLE 4: Node Pairs? Shavitt loop construction and coupling coefficient evaluation.
AN (Aa, Ab) This is demonstrated in the right-hand side of Figure 1 in which
1 the Shavitt loop is represented as a single directed walk on the
- (0,-1), (-1,+1) = . :
0 0. 0), 1,42), (+1, —2) auxiliary pair graph. In_g_eneral, each pair of CSFs that form a
+1 (0,+1), (+1,-1) nonzero coupling coefficient corresponds to a path on the node-
+2 (0,+2), (+1, 0), -2, —2) pair graph from its tail to its head. There is a bottom part of

aNode pairs that contribute to upper triangle Shavitt loal; = this pa}th that. corresponds to the lower walk of the Shavitt loop,
Nora— Net: A = 8bra — Acer, Ab = boa — bier. Each node of the Shavitt  there is a middle section of the path that corresponds to the
graph may be paired with other nodes at the same level characterizedShavitt loop itself, and there is an upper section of the path
by these fa, Ab) values. that corresponds to the upper walk of the Shavitt loop. Pairs of
CSFs that do not satisfy theN andAb conditions at each level
is sometimes switched; the MCSCF DRT and internal part of (and therefore would result in zero coupling coefficient values)
the CI DRT used in the COLUMBUS program system employ cannot be represented as a path on the pair graph. The segment
a reverse lexical index scherh&* 16 values of the Shavitt loop on the left of Figure 1 are associated
At this point, we introduce an auxiliary graphical structure with edges of the pair graph, and the coupling coefficient value,
that will be used in the development of the current method. which is computed as the product of segment values of the
This will be called theauxiliary pair graph Like the corre-  Shavitt loop in the Shavitt graph, corresponds to a product of
sponding Shavitt graph, it is ordered by orbital level from bottom edge values in the node-pair graph. A particular edge of the
to top. Each level of the pair graph has a set of nodes which, to pair graph may be associated with several different Shavitt loops
avoid confusion with the Shavitt graph, will be calleertices of the same shape and the same segment value and also with
Each vertex of the pair graph corresponds to a pair of nddes ( Shavitt loops of different loop shapes; each edge may thereby
j") in the same level of the Shavitt graph. The only node pairs be associated with several different segment values.
of interest are those that contribute to the Shavitt loops When constructing a transition density matrix with the
associated with the coupling coefficients in eq 7. The first step traditional GUGA approach, the following contribution is
in constructing the pair graph is to determine this list of node accumulated for each Shavitt lodp
pairs at each level. The node pairs are characterized first by the

quantity AN with AN = Npa — Nt The node pairs that D”‘)"qN<— 9(T)- z Z XX (11)
contribute to the Hamiltonian matrix satisfgN| < 2, and the upber(n) lower(n)

node pairs that contribute to the upper triangle of the CSF

Hamiltonian matrix correspond to the subset < AN =< 2. If only the upper-triangle Shavitt loops are generated, then the

The AN = —2 node pairs contribute 0n|y to the lower triang]e summation includes also the brket interChange terms. ThUS,

of the Hamiltonian matrix, so they are not referenced in our there are either 2x{, or 4 (xX,) arithmetic operations,
approach in which only the distinct upper triangle Shavitt loops depending on how the CSF index symmetry is treated, associated
are generated and the brlet interchange is app“ed in order with each Shavitt |00p value in the construction of the density
to generate the other triangle terms. The node pairs are nextmatrix element, the same operation count as for a Hamiltonian
characterized bAb = bz — bier The node pairs that contribute ~ matrix—vector product. The density matrix element is the

to Hamiltonian matrix elements satisfy the spin conditid| summation of these contributions over all Shavitt loops
< 2. The result from both the occupation and the spin conditions MIN M N

is that an individual node in a Shavitt graph can be paired with, Dpg = Z 7(T): Z 2 Xm %n (12)
at most, only 10 other nodes (at the same level). These 10 upper() lower(T)

possibilities, each of which corresponds to a unigiia, (Ab)
combination, are enumerated in Table 4. Thus, the total number
of node pairs satisfiedlyar < 10Now, and for large Shavitt
graphs, the number of node pairs increases only linearly with
the number of nodes (rather than quadratic as the term might

We now apply the above density matrix construction approach
to a pair of product functions. It is convenient to separate the
arc factors from eq 3 into the three parts corresponding to the
lower walk range, the loop range, and the upper walk range.

imply). Table 2 shows some actual node pair counts for a (lower) (loop) (upper)
selection of Shavitt graphs, and it is seen that the total number M _ oM. oM . oM 13
of node pairs ranges between 2 and 9 times the number of nodes. X = |:| wtum)"( I:' utam)*( l:l wom) - (13)

At the beginning of the procedure, all of the possible node pairs
for the given Shavitt graph are determined, and they are groupedThis separation allows the summation of CSF coefficient



8886 J. Phys. Chem. A, Vol. 110, No. 28, 2006

products to be written as

DL

(lower)

M N
[( I_l a‘u(u,m)oﬁu(u,n)) :

uppetower uppetower u
(loop) (upper)
M N M N
([T etam S C[ ] Guum G
u u
(lower)
— M N
=[( [ %wm %un)l®
lower “u
(loop) (upper)
M N M N
( I_l 0*y(u,m) 0'ﬂ(u,n)) [ z ( |_| aﬂ(u,m) 0*/A(U,n))]
u upper u
(a-1)
_ . ,MN M N —MN
="t '( I_l a,u(u,m) O‘/A(U,n))')/h (14)

u=(p—1)

The arraysyMN and yMN have been introduced in ref 1, and
they are used in the construction of the overlap meix =
M|NC} of the derivativesSun/da,, and in the construction of

Shepard

pair graph that are connected by the edge that corresponds to
that segment. The density contribution from a single Shauvitt
loop can be written as

(0-1)
Dog =71 [] Frowwn@I7n  (18)
u=(p—1)

We now examine in detail how the contributions from all
Shavitt loopsT can be computed efficiently. The total density
is given by the summation of contributions over all Shavitt loops
T.

(g-1)
D?fq“=zy?€%-[ |(‘|1)F5”<$,y.(u+1)(Qu>]-7hQ% (19)
u=(p—

In the auxiliary pair graph, this summation corresponds to the
contributions from all paths with nonzero loop values. All
Shavitt loops that terminate at the head nbdbare the common
factor ;7hMN. If all of these loop contributions are summed
together, their density contributions could be computed with a

node and arc densities. These arrays, which do not depend orsingle multiplication by that common factq‘zh"“. That is, if V&

the individual Shavitt loop, can be computed once, using a
recursive algorithm with an effort that scales only as the number
of nodes in the grapfN:ow, and reused for all Shavitt loops.
The transition density construction for product functions from
a single Shavitt loop can then be written

(9-1)
D:\JAQN - y{\AN. (//}(T)'( |_| a;’\tn(u,m) ap’:l(u,n))'j_/l’:m (15)
u=(p—1)

It is clear already that the product function leads to a much
simpler procedure than the traditional GUGA CI approach
because the 4xf,) arithmetic operations associated with the
explicit DO loops over the upper and lower walks are eliminated
and replaced instead with simple array lookups.

Consider next the computation of the'(T)- (I ;e )

a;f(uyn)) product in eq 15 for a single Shavitt loop. In the GUGA
approach, the loop value is itself a product of segment values

(0-1)

wm= ] 7T

u=(p—1)

(16)

Ty = Tu(dpra, Gket, bora biet; Qu) is the segment of the Shauvitt
loop T that connects the bra and ket nodes at level the bra
and ket nodes at leveli(+ 1), Q, is the segment value type at
level u, and 7/(T,) is the segment value associated with that
segment~8 In the pair graph representation, corresponds to

an individual edge connecting two vertices. This segment
factorization allows the loop product contribution to be written
in the factored form

(9-1) (a-1)
M N _ M N
W(T) |_| Oju(u,m)au(u,n)_ I—l W(Tu)ow(u,m) O‘y(u,n)
u=(p=1) u=(p=1)
(@-1)
— MN
- |_I Fv(u),v’(u+1)(Qu) (17)
u=(p—1)
— g M N 1
Thesegment factor l’%{]‘w(u +1)(Qu) = 77(Tu) 0 m) Qyuny IS the

combination of the GUGA segment value and the bra and ket
arc factors at levell. v(u) andv'(u + 1) are the vertices of the

with v' = v'(n 1y is the total contribution from all Shavitt loops
with head nodéh

(headh) (@-1)
vi= 2 nl [] Pl (@] (20)
u=(p—1)
then the density can be computed as
D',\)AqN = Z\/g'(h,h) ?7r’\1/|N (21)

where the summation is limited to tM.,(q) nodesh at level

g. If there areN,, total Shavitt loops, this approach would reduce
the total number of arithmetic operations by the quantity,2[
— Nrow(Q)] (i.e., N, separate multiplradd operations with the
factors7p" would be replaced biNo(q) operations).

We next consider how the contributions from all Shavitt loops
with the head nodh can be computed. As shown schematically
in the auxiliary pair graph patch in Figure 4, the Shavitt loops
with head nodén at levelq all pass through vertices at levej (

— 1) and terminate at the vertex corresponding to the diagonal
node pain' = v'(h . We assume for the moment that all Shavitt
loop contributions from the connecting vertices at leveeH

1) are available. Let these quantities be deno\éal. In
Figure 4, it is assumed that there are four vertices that are
associated with edges that connect to the head hatie actual
number of connecting vertices for the various Shavitt loop
segments is limited by th& AN segment classification in Table

3 and also by the available arcs and nodes of the Shavitt graph.
By using the (arbitrary) vertex labels in Figure 4, the total Shavitt
loop contribution from nodé may be written as

Vi= VA RN R + VTR R) +
VIR R + VTR R

1 1
In general, for an arbitrary loop shape, the total contributions
to the head nodé may be computed as

Vﬂ'(hvh) = z\/gileL\"(h,h)(Qq—l)

(22)

(23)

V'(h iS the diagonal node paih(h) associated with the loop
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Level (h,h) Segment

Type

=

q-2

AN=0
Figure 4. The Shavitt loop contributions represented on the auxiliary
pair graph for all contributions to nodeat levelg. The AN = 0 pair
graph vertex denotech(h) corresponds to the Shavitt graph ndde
For this Shavitt loop shape, there are four edges, correspondixgyb
= —1 in Table 3, that connect théd,(h) vertex to fourAN = +1
vertices at leveld — 1). Each vertex at level(— 1) is connected to
up to six vertices at levelg(— 2) corresponding to thAAN = 0
segments in Table 3. The vertices at leeeH{ 1) connect to otheAN
= 0 head nodes, which are not shown explicitly. Each vertéxthe
pair graph corresponds to\4 value. TheV: values at leveli in the
pair graph are computed recursively from MEl values at level
— 1) and theFf,’l'L‘f(Qufl) values associated with the connecting edges.

AN=+1

headh in level g. The summation ranges over all verticeat
level (@ — 1) that connect to' 1 with segment typ&g-1.
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level q over all loop heads. The overall procedure for product
functions consists not of constructing individual Shavitt loops
and summing each of those contributions individually, but rather
the propagation of all possible Shavitt loop contributions from
all node pairs at one level to the node pairs at the next higher
level, and finally the combination over all possible loop heads
to construct the density matrix element.

The above recursive formulation is equivalent to a sequence
of matrix—vector products.

V= VUIETNQ, ) (26)

A transition density element may be written in symbolic form
as

Dpa = ¥onF " (Q-)F"™(Qp)+F™(Qu)F"™(Qq-)7(g
(27)

The matrices=™N are rectangular and, depending on the loop
shapeQ and the complexity of the underlying auxiliary pair
graph, relatively sparse. The rows and columns of FH&
matrices are indexed by the vertices of the auxiliary pair graph
at the two adjacent orbital levelgyy' is a column vector
indexed by diagonal head node pairs at layedndy{" ) is a

row vector indexed by diagonal tail node pairs at leyet(1).

Our recursive procedure outlined above is equivalent to the
computation of this product in left-to-right order, and the node
pair valuesVY in eq 26 are the intermediate (row) vectors at
level u in this series of matrixvector products.

It has been assumed in the above discussion that the orbital
levelsp and q are given, and that the contributions from all
possible Shavitt loops are included into tf[#}"qN matrix
element for that pair of orbital indices. Given thafy' has
been constructed using the recursive level-by-level procedure
of eq 25, consider the construction of tbgg'ﬂ) element. This
would, in principle, consist of the same initiation step at level

This same procedure can then be invoked for the segment(, — 1) and propagation with facto"(R) from levelp up to

factors between levelgj(— 2) and ¢ — 1). For example, the
contributions to noder = 2 in Figure 4 may be computed as

13
Vit- SV

=

"R

(24)

in which nodey = 2 is connected to the six nodes shown at the
lower level. In general, the node-pair valu&s can be
computed recursively from th’c;f!ﬂ’l node-pair values and the
F™(Qu-1) segment factors that are common to all Shavitt
Ioéps that share that segment. At an arbitrary level within the
Shavitt loop, we have the general recursion relation

Vi =S ViTENQ) (25)

V'

The summation is limited to only the nodesn level (u — 1)
that connect to node' in level u with segment typ&,—1. As

seen in Table 3, the number of terms in this summation ranges

between one and six, depending on N segment type and

on the available edges in the pair graph. The common factors
FI'(Qu-1) at each level within the loop range can be sepa-
rated, level by level, until all that remains are 8" factors

for all possible loop tailst at level o — 1). The Dy
construction process then consists of an initiation at lgvet (

1) over all Shavitt loop tails, a level-by-level propagation of

node-pair value& up to level ¢ — 1), and a termination at

level (@ — 1), then another propagation wigty(R) from level

(g — 1) to levelg, and finally the termination with thE}\(R)
segment factors from levelto the loop head nodes at level (

+ 1). The first steps of this process, initiation at leveH 1)

and propagation up to levetj (- 1), are repetitions of thByy'
construction steps. This suggests a procedure in which these
common initiation and propagation steps are performed only
once, and that effort is shared for both density elements. This
is accomplished by constructirﬁgi;"qN first, then discarding the
termination information at level, propagating up a single level
from (Q — 1) to g, and then terminating at levet](+ 1) to
form D}t 4. Given the node-pair valuegd from the D"
construction step, the effort required to constrmﬁgﬂ) is
only the propagation step to form® and the termination step
atlevel g + 1). Our algorithm to achieve this reuse of the shared
node-pair values for the entire range of orbital indipeendq

for the one-particle density is shown in Figure 5.

It should be pointed out that our choice of beginning the
propagation procedure at the levpl<{ 1) and propagating up
to level q is arbitrary; it would be just as easy to begin the
procedure at levej and propagate down to leved (- 1). That
is, eq 27 could just as easily be evaluated in right-to-left order,
or some other combination of right-to-left for some levels and
left-to-right for other levels. This recursive procedure with reuse
of shared node-pair values may be applied to both one-particle
Shavitt loops and also to the various two-particle Shavitt loops.
As seen in Figure 2, there are only 24 different Shavitt loop
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DOp=1,n
Compute D, .
(R).

[N

Initiate V2 = > ™ F}™
DOg=(p+l),n

ViV (E)

TerminateV;§, =) V/'F)!
v

MN > MN
Compute D" = ZVV“’MM;/,, .

h
Propagate V¢ = Y V¢ F}% (R) to prepare for the next q.

ENDDO ¢
ENDDO p
Figure 5. The recursive procedure to compute the reduced transition
density matrixDMN,
DOp=1,n

MN
Compute d,,,,

and D}V from loop shapes (14ab).

Initiate V,? for all distinct bottom loop segments.
DO g=(p+1),n
Terminate all 2-index loop shapes, (/1ab)—(13), and

MN MN MN MN MN
ComPUtedPP‘M’ quPq’ dpppq ’ dpqqq ’ and DP‘? :

Propagate V=YV 'FM (Qq,l ) to prepare for the 3- and 4-index loops.

DOr=(g+l),n
Terminate all 3-index loop shapes, (4ab)—(10), and

MN MN MN MN MN MN
computedany , dym,, Aoy Aomrs domes and di, .

Propagate V,, = Y V,"'F% (Q,_,) to prepare for the 4-index loops.

DOs=(r+l),n
Terminate all 4-index loop shapes, (1ab)—(3ab),

dMN dMN

MN
pars Dpsars and d

and compute pras +

Propagate V= Y V;"'F)% (Q,_,) to prepare for the next s.

v

ENDDO s
Propagate V,, = Y V,"'F)% (Q,_,) to prepare for the next r.

v

ENDDO r
Propagate Vi =Y VI 'F! (Qq_l ) to prepare for the next g.
ENDDO g
ENDDO p
Figure 6. Outline of the recursive procedure to compute the full set
of reduced transition density matricB4™ and dvN.

shapes, so the programming effort that is required to implemen
this approach for all one- and two-particle operators is relatively

Shepard
TABLE 5: Operation Counts?
t NPT DO loop Nug
1 6 p 1
2 24 q u—1)
3 27 r (u—1)u-—2)2
4 6 S (u—1)u—2)(u—3)/6

aNPT is the number of initiations, propagations, and terminations
that occur for the full set of Shavitt loop shapes. The DO-loop indices
correspond to those in Figure 8, is the number of times each set of
propagations occur at orbital levelfor the group oft-index Shavitt
loop shapes.

compute Shavitt loops and individual loop values, there is rela-
tively little arithmetic effort that is involved with this method.
In the traditional GUGA CI applications, there are Xxg)
arithmetic operations associated with each Shavitt loop value
(assuming the braket interchange is invoked on the upper
triangular Shavitt loop shapes). In the specific case of traditional
MR—CI(SD), only partial Shavitt loops are constructed in the
internal orbital space, the Shavitt loop contributions in the larger
external orbital space are treated implicitly, and consequently,
there is even a larger ratio of arithmetic effort to Shavitt loop
construction effort involved. In the product function case, how-
ever, these arithmetic operations associated with the upper and
lower walks are eliminated entirely and replaced with array
lookups. This makes the efficiency of the segment factor propa-
gation critical to the overall performance. To address this critical
aspect of the method, we have developed an efficient algorithm
to propagate the segment factor contributions from one level to
the next. This algorithm is discussed in detail in the Appendix.
Examination of Figure 6 reveals four nested DO loops,
suggesting an effor®(n) that scales as a fourth-order poly-
nomial in the molecular orbital basis sizeTable 5 summarizes
the computational effort associated with each group of Shavitt
loop shapes. The integecorresponds to the number of distinct
orbital indices in the group of Shavitt loop shapes= 1
corresponds to the one-index loop shapesakl4t = 2
corresponds to the two-index loop shapesaf®(13), and so
forth. Thep, g, r, andslabels correspond to the DO-loop indices
in Figure 6.N}"" is the total number of initiations, propaga-
tions, and terminations (IPT) that occur at each DO-loop level.
For example, in the DO loop, there are 6 Shavitt loop shapes
((11ab), (12abg), and (13)) that are terminated to construct the
dg"p’\éq dm')q dm')q dg/'q’:‘]q and Dg"qN density elements, there are 12
propagations at levey that prepare for the three- and four-
index loop shapes, and there are 6 propagations to prepare for
the next value ofy. These 246 + 12 + 6) IPT operations
are all of the general form of eqs 23 and R, is the number
of times the propagation and termination steps occur for each
orbital levelu within the tth nested DO loop. For example, the
two-index loop shape contributions in thge DO loop are

tterminated g — 1) times at levelg in order to generate the
MN

th» Dyo. ..., Dy, density elements. Note that there are

modest. It is also seen in Figure 2 that a two-particle density more terminations at the higher levels than at the lower levels;

matrix element sometimes consists of contributions from two SO™M€ ((:jo][lse%uenceﬁ gf_ this are _disclussehd below. The be_ff(?rt
Shauvitt loop shapes. Our recursive algorithm for the construction f€auired for the method is proportional to the sum over orbita

of the full set of both the one- and two-particle transition density
matrix elements is outlined in Figure 6. There is no component
of effort of this recursive algorithm that scales explicitlyNs,

and there is no storage requirement that scalds¥.as

3. Results and Discussion

In this section, we consider the computational costs that are
associated with our new method in terms of storage and floating

point arithmetic effort. In contrast to the existing codes that

levels of the product of the number of IPTs at each orbital level
u, the number of times that orbital level occurs in the nested
DO loop structure, and, the effort required to propagate the
node-pair values at that orbital level. A reasonable approxima-
tion for this effort is thatBy O Nrow(Uu) or Sy O Npailu). This
total is

4 n

o) = Z > BN NFT (28)
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The simplest performance model is to assume fhat § O Using traditional Cl methodology, the effort to constrhigiy
Nrow/n is the same for each orbital level. With this simple for the full-Cl expansions in Table 2 scales @$N.si1*); each
assumption, the total effort is estimated by row of the Hamiltonian matrix in the CSF basis contairs?n?

nonzero elements, and = HxN requires a multiply and add
4 n operation for each nonzero element. The subsequent scalar
@(n)zﬁz Ny NFT product Huyn = xM-wN requires only @ (Nes) additional
=16= effort. The details of various efficient full-Cl methods are
given in refs 19-22. As discussed in more detail in ref 1,
Nest & (8:4")/(nn?) for largen for thesen = N full-CI singlet
wave functions, which results in an overall scaling of about
@ (n?4") to constructHyy using traditional CI methods. Our
(u=DHu-2)u-3)] method has much better scaling properties than the traditional
1. 4 3 2 Cl approach for the construction of a Hamiltonian matrix
= Zﬁ(n + 12n° + 5n° + 6n) (29)

=B 5 [6 + 24— 1)+ 27U — 1)(u — 2)/2+

u=

element between two product functions. In fact, the results for
the largest expansions in the bottom half of Table 2 cannot,

For large orbital basis sets, the total effort with this assumption Practically speaking, be performed using traditional Cl meth-
is (7 (Bn%). This is, of course, a very approximate model, but it OQOIogy using current hardware tec_hnolqu. For example, Table
should be applicable in the general sense if no other information © in ref 22 gives timings of 7928 siteration for ar= N = 14
about the Shavitt graph structure is available. In general, eachc@lculation on the stilbene molecule (on an IBM SP3 with peak
level of the Shavitt graph will have a different number of nodes CPU performance of 1.5 GFLOP/s). Almost all of this time is
and node pairs, so the computational effort required for IPT the computation of thes = Hx matrix—vector product. As seen
will vary from level to level. In the following, we discuss N Table 2, this time can be compared to 0.01 s using our
specific examples of Shavitt graphs and the correspondling ~ "ecursive algorithm with product functions (on a P_owerMac G5
factors. There are about?2 DMN elements andn¥/8 dMN with peak CPU performance of 10 GFLOP/s). Using the above
elements that must be constructed. Accounting for the orbital operati.on count estimates, and ignoring the practica] difficulties
index symmetry, the computation of RPMN) requires about  Of storing vectors of lengtiNest > 10%°, a rough estimate to
n?/2 multiply—add operations, and Trg"™N) requires about?/8 computeHy for the n = 46 row of Table 2 using traditional
multiply—add operations to formyy = M{H|ND With this Cl technology is about 1.850* s (over one million times longer -
parametrization, the effort required to constrGgt = IM|NO than the age of the universe). In contrast, our timing results in
scale$ as ¢ (8n). Thus, for large orbital basis sets and Shavitt Table 2 show that only a modest effort of a few seconds is
graphs with reasonably largk factors, we expect the overall required by our recursive algorithm for this Shavitt graph, which

effort to be dominated by theMN construction of the four- ~ corresponds to an expansion spacégf ~ 5.510%, or over
index Shavitt loop shapes. 9.2 mol of CSFs. (We note in passing that the CSF count given

The t|m|ngs in Table 2 show that our method is very efﬁcient’ in Table 9inref 22 is incorl’ect; the correct CSF count in Table

and it scales very well for increasing wave function expansion 2 was used in the above extrapolation estimate.) This is, of
length, compared to traditional Cl approaches. The smaller course, somewhat of an apples-to-oranges comparison, because
calculations in Table 2 were done both with traditional GUGA the traditional CI methodology allows for the computation of
Cl procedures and with our new procedure, and all density the matrix-vector product and matrix elememiun using
elements and energies were verified for correctness. For thearbitrary CSF vectorg™ andx™, whereas our new method only
larger calculations which cannot be done with the current allows for vectorsc" andxM that may be represented in terms
capabilities of traditional CI methodology, an arbitrary set of Of arc factors according to eq 3. Furthermore, these timings are
nonzero arc factors were chosen in order to generate thefor only a single matrix elementun (Which is analogous to a
necessary statistics and timings. For these full-Cl wave func- Subspace matrix element in a Davidson iterative procedure), and
tions, the actual number of nodes in leudb given byN;o(U) at this time, we do not know how many of these matrix elements
= (m+ 1)(m+ 2)/2 form= min(u, n — u); that is, the number ~ Will be required with our new method in order to compute
of nodes per level starts at 1 at level zero, increases to aaccurate energy values and wave functions. Nonetheless, the
maximum at leveh/2, and then decreases back down to 1 at dramatic differences in timings, storage, and overall effort
level n. If we assume thaB, O Niw(U), then the total effort suggest the tremendous potential of our new method.

may be modeled as Consider a singlet full-Cl wave function expansion in which
n > N. The Shavitt graph in this case begins at level 0 with a
4 n single node and builds up to a maximum number of nodes at
Om) O Z Nm\,\,(u)NuytN{PT level N/2. The number of nodes at this level is given by
=16= 2)(N + 4)/8. Between leveldl/2 and o — N/2), every level in

the Shavitt graph is repeated with the saragh) nodes, the
= (13n° + 3000° + 18551 + 414(° + 3171 + same node pairs, the same set of connecting segments in the
312()/1920 (30) pair graph, and the same segment valtégl,). (The segment
factorsF/(Qu) would be different at each level because of the
Thus, for thesen = N full-Cl wave functions, we see that the arc factors.) Above leveln(— N/2), the number of nodes per
effort to construct a Hamiltonian matrix element scales formally level begins to decrease, down to one node at leverhis
as (@ (nb) for our procedure. With the appropriate overall scaling, situation involving the repeated levels can be exploited by using
the above model agrees very well with the timings given in pointers at each level into a common set of segment values. In
Table 2. However, if the timings in Table 2 are fit to a general this special case, the storage requirements for the segment values
fourth-order polynomial, the resulting agreement is also very would not increase for increasimgwith fixed N). Furthermore,
good. This suggests that the wave functions in Table 2 are notin this situation, the, factor to propagate from level to level
large enough to observe the above prediate@?®) asymptotic does not change in the middle section of the Shavitt grgph (
scaling behavior. O N%/8), so the overall effort to comput@™N, and alsoHyn,
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would scale ag? (N2n%). For fixedN, the effort would increase  in global PES computations. The sizeNyf will affect the total
only as @ (n*) as orbitals are added. This scaling would apply, number of Hyy matrix elements that must be computed.
for example, to the common situation in which a sequence of However, with the somewhat remarkable timings we see for
increasingly accurate orbital basis sets is used for a given molec-the computation of a singldyvy with this method, we feel that
ular system in order to extrapolate to an infinite basis set limit. the new method shows great promise evehljfmust be as

Consider the application of the product function approach to large as several dozen or several hundred.
a MR—CI Shavitt graph. In this situation, the number of  As discussed in ref 1, we exploit point group symmetry in
electrons that occupy the external orbitals is constrained to somethis approach by introducing symmetry-dependent chaining
maximum value. This constraint is achieved by deleting the indices? in the DRT representation of the Shavitt graph. This
majority of nodes in the external orbital levels in order to limit is appropriate for point groups with one-dimensional irreducible
the cumulative occupancy of these orbitals. The external orbitals 'epresentations (irreps), specifically to g, point group and
are placed typically at the bottom of the Shavitt gr&sfé In its subgroups. This allows the upper and lower walks at each
the MR—CI(SD) case, for example, the external orbital levels node to be grouped by the irrep inddx For the Hun
have up to 2 electrons, resulting in only the 4 nodes corre- construction step, this requires propagation of sepa¥ate
sponding to &, b) pairs (0, 0), (0, 1), (0, 2), and (1, 0) (above Products for eac’. If point group symmetry were ignored,
level 1 in the external space). According to Table 4, these 4 then only one set of products would be propagated. Therefore,
nodes result in 14 node pairs per level. The effort required to the use of point group symmetry increases the cost of the
propagate the segment factors within the external orbital spacec@lculation by approximately a factor bfthe number of irreps
is therefore constan( O 14) and relatively small regardless N the point group. In contrast, the use of point group symmetry
of the total number of electrons in the system. Increasing the in traditional Cl approaches results in significant reduc_:tlons in
orbital basis size results in a procedure that scales only asthe effort (various parts of the effort and storage requirements
@ (14n%). If the complexity of the external orbital space were are reduced by factors éfto h®) to compute a matrixvector
increased, for example, to allow up to 3 electrons in the external Product. Even with this cost increase, there are still two major
orbital space for a MRCI(SDT) expansion, then in addition ~advantages to using point group symmetry with our new method.
to the above 4 nodes there would also be nodes veittb) Thg first is that it eliminates any unwanted symmetry contami-
pairs (0, 3) and (1, 1) at each level (above level 2), and these nation from the compgted_\_/vave functions and the energy a_nd
6 nodes would result in 26 node pairs. The computational effort property yalues. This simplifies several aspects of the ca}lculatlon
would scale as? (26n%), and for a givem, the effort would be of poter_ltlal energy surfaces and molecular properties. The
about @9/14) larger than for the MR-CI(SD) calculation. That ~ Sécond is that thelyy elements for severdl may be computed
is, the MR-CI(SDT) Hun calculation would be expected to Wlth re_Iat|ver I|ttle_§dd|t|onal effort beyond that requ_lred fora
cost about twice as much as the MRI(SD) calculation. .smgle.|rrep. Intrad|t]onaICI apprqaches, the calculat!on of gach
Allowing 4 electrons in the external space for a MRI(SDTQ) irrep. |nvo!ves basically an entirely new calculation, Wlth
expansion would require adding the nodes (0, 4), (1, 2), and re[atlvely little shared effort between the separate calcullatlons.
(2, 0) to each of the external orbital levels (above level 3), and er|th our approach, a single set of propagations results ih all
these 9 nodes result in 46 node pairs and an effort that would Hun €lements. This simplifies several types of calculations,
scale ag? (46n%); for a givenn, the total effort would be about mclgdmg the simultaneous computation pf several ground and
(*®/,¢) larger than for the MR CI(SDT) calculation, and it would excr[eql states of severﬁlanql the computation of state-averaged
be about {¢/1) larger than the MR CI(SD) calculation. As ~ energies and properties in which the computed energy or
shown in Table 5, propagations occur at the top of the Shavitt Property is a weighted average, with arbitrary user-specified
graph Wlth th|s approach more Oﬁen than the propagat|ons nearWelghtS, over Several |nd|V|dUaI states. Furthermore, It .|S
the bottom of the Shavitt graph. Consequently, for M& stralghtforward with this app_roach to compute transition density
Shavitt graphs, it would appear to be more efficient to place MatricesD"N andd"™ for arbitraryI'y andI'y. This allows the
the internal orbitals (which have more node pairs per level) at Computation of transition properties, such as transition dipole
the bottom of the Shavitt graph where propagations occur fewer moments which may be used for the computation of spectral
times and to place the external orbitals (which have fewer node @mplitudes.
pairs per level) at the top where propagations occur more )
frequently. Alternatively, the traditional orbital placement could 4- Conclusions

be chosen, but the recursive propagation procedure could be ap efficient procedure has been presented to compute
performed from the top of the Shavitt graph down to the bottom. Hamjitonian matrix elements and reduced one- and two-particle
These orbital ordering considerations apply also to other ShaV'ttdensity matrices for electronic wave functions using a new
graphs in which different orbital occupation restrictions are graphical-based nonlinear expansion form. The wave functions
impos.ed. on.differe'nt orbital sgbset'& The impact of these kinds computed with this method are spin eigenfunctions and may
of optimizations will be examined in the future. be chosen to belong to pure irreducible representations (for the
All of the above timings and discussions of scaling with Dy, point group and its subgroups). Wave functions in this
respect to orbital basis and molecule size apply only to the approach are expanded in a product function basis, and each
particular situation of the construction of a single Hamiltonian product basis function depends, in a nonlinear way, on a
matrix element with two product basis functionSiun = relatively small number of variational parameters. In general,
M|H|NL] At this point, we do not know how difficult the  the effort required to construct an individual Hamiltonian matrix
optimization will be to minimize the energy with respect to the element between two product basis functibhg = M|AIND
arc factors. This is a very nonlinear optimization problem, and scales as? (4n*) for a wave function expanded mmolecular
this could result in a difficult numerical procedure. This orbitals. The prefactgf itself scales betweeN° andN?, for N
optimization will be the focus of future effort, and it is expected electrons depending on the complexity of the underlying Shavitt
to share the efficient recursive technology that has been graph. In previous work, the computation of the corresponding
developed in this work. We also have at this time only limited overlap matrix elemer&yn = M|NCwas shown to require effort
experiencé with determining the number of product basis proportional toc (8n). There is no component of the effort or
functionsN, that will be required to achieve chemical accuracy of the storage requirements for this matrix element construction
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procedure that is proportional fd.s. These matrix elements  outlined in Figure 6. It might appear that we would need more
allow for the computations of ground and excited electronic than 24 node-pair value arrays one or two for each Shavitt
states. Timings with our initial implementation of this method loop shape in Figure 2. In our implementation, only six node-
are very promising. Wave function expansions that are orders pair value arrays are required. This is due to four different
of magnitude larger than can be treated with traditional Cl reasons. First, most of the propagation steps are shared by
methods require only modest effort with our new method. several different Shavitt loop shapes. For example, the lower-
level initiation and propagation of théRR..) segment factor
Acknowledgment. The author thanks Professor I. Shavitt products is shared by the loop shapeabjl (3ab), (6ab), (7),
for many helpful discussions regarding GUGA in general and (8ab), (10), and (1Bc). Instead of propagating 12 equivalent
this work in particular. This work was supported by the U.S. sets of values (or 17 sets, if the= 0, 1 sets are counted

Department of Energy by the Office of Basic Energy Sciences, separately), only one set is propagated over the range of common
Division of Chemical Sciences, Geosciences and Biosciences,orbital levels.

under contract W-31-109-ENG-38. Second, of the distinct shapes that are propagated, many of
) them correspond to node pairs with differefi values, and
Appendix they therefore occupy different elements if stored in the same

In this appendix, we discuss the computation of the reduced V array. At the lowest orbital level p, only six sets of unique
transition density matriceB™N anddN which are used in the loop values are initiated. These correspond to segment shapes
construction of the Hamiltonian matrix elemeyiy = 0M|H|NC L (stored inAN = —1 node-pair entries)lV andRL" (in AN =
In section 2, the recursive nature of this construction process 0 Node pairs)R andRW(in AN = +-1 node pairs), an&R (in
for product basis functionfMJand [NOwas exposed. In this AN = +2 node pairs). These values require only two sets of
appendix, we discuss further details of our initial implementa- Node-pair array/ because the\N labels are distinct except
tion, directed primarily toward readers interested in implement- for the two conflicting cases. As the values are propagated from
ing this method or in modifying an existing implementation. ©ne level to the next, they are forked and merged as appropriate,

We examine first the underlying data structures we use to @nd the maximum number &N conflicts at any level in our
carry out the algorithm outlined in Figure 6. This is based on procedure is six, which results in the requirement for that number
the auxiliary pair graph introduced in section 2. The first step Of node-pair array¥. ) )
is the determination of the list of node pairs according to Table ~ The third reason that relatively few node-pair value arrays
4 and the determination of the edges (connecting segments)@re needed is that some of the individual Shavitt loop propaga-
according to Table 3. Given this representation of the pair graph, tions can be combined before the loop head is reached. This
we next consider two different choices to compute the segmentoccurs for (&)—(2a), (1b)—(3b), and (D)—(3a) pairs of loop
factorsF"™(Qy). The first consists of looping over the vertices Shapes. For example, loop shapes)(@nd (2) correspond to
of the pair graph at leval, indexing the edge links from each 1€ Operatorggys and &, respectively. Both of these loop
vertex that correspond to segméht and performing a table ~ Shapes contribute to the same density matrix elerdiit In
lookup based 0lya Gkes, bora andbye; to access the appropriate  the procedure outlined above, these two contributions could be

segment value7Z’(T,). This segment value is then combined Propagated individually, and the results combined when the loop
with the arc factors to fomFZ"N(Qu), and the contribution is  Shapes are terminated at leseHowever, between levetsand

accumulated into the appropfid@é“ node-pair value accord- s, both of the propagations would invoke exactly the same

ing to eq 25. The second chotéeonsists of precomputing all Fl.(R) andFyl(R)yy" factors and exactly the same node-pair

possible segment values for each segn&nat all levelsu. indices. Therefore, it is possible to combine the node-pair values
These segment values are grouped by level so that they can b&t |evelr and then to propagate only a single set of node-pair
accessed simply, with minimal overhead, during\thpropaga- values for the combined &) + (2a) contribution. The same

tion. The propagation step then consists of the segment value€arly combination can be applied to the loop shap®} {1
lookup, multiplication by the arc factors to form the segment (3P) and to loop shapes i + (3a). Consequently, in the
factor F"N(Qy), and accumulation int&**%. The first algo- innermost DO loops of the procedure, only threg sets of nodg-
rithm has the advantage of smaller Ioovkup tables and smaller P2\ values nee_d fo be propggated rather than six sets,_reducmg
memory requirements, whereas the second algorithm has theg'e corresponding computational effort and storage requirements
advantage of a simpler innermost DO-loop structure. Also, the y a factor of one-half. .

second algorithm has the advantage that only nonzero segment | "€ fourth reason that only relatively few node value arrays
values need to be saved, whereas the first algorithm includes®'€ equired is due to thgfstileatment of the= 0 andx = 1
lookups of a small fraction of zero segment values (which are SP-récoupled componefist” of the two-particle operators.
tested and ignored). There are 28 segment value types in ourln general, we havesgs = €4 + gy and we use the
implementation; these are grouped according toANeat the identities

top of the segment and enumerated in Table 3. Table 2 shows

the total number of segment values for a selection of Shavitt egsqr= eg,qs

graphs. Itis clear from this table that the total number of segment 1l — _al

values is modest even for the largest wave function expansions, Spsar ip'qs 1 forp,q<r.s (31)
so this is the algorithm that has been used for the timings in egsrqz > egqrsz > Eoqrs

Table 2. Future work will focus on other efficient methods to
propagate thé/ array values. For example, if the node-pair
vertices are ordered appropriately, the sparse matexctor to reduce the number of values that must be propagated. Be-
product in our current formulation of eq 27 might be replaced cause these are general operator identities, they hold also for

with dense-subblocked or dense-banded matrector products, [ €}, JAilmatrix elements over primitive CSFs and for the
allowing for higher computational efficiency for the same, or [M|e; NOlinear combinations. For example, we propagate
almost the same, total arithmetic operation count. only thex = 0 components of loop shapeaj3only thex = 1

After the segment value tables are computed, the transition component of loop shapelf and the sum and difference of
density matrix elements may be computed using the procedurethese two values are the loop values of interest that form the
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density matrix elements. This means that only two sets of valueseffort for n < 12, whereas the &) loop propagation, which
need to be propagated for these two loop shapes rather tharallows for the early combination, results in less effort for

four sets, halving both the computational effort and the storage 12. However, another possibility exists which combines the
requirements for these loop shapes. These operator identitiesadvantages of both approaches. This consists of propagating
are used to reduce the computational effort and storage(2ab)" up to levelr and then interchanging the briet values

requirements for loop shapesafd, (2ab), (3ab), (4ab), (8ab), with the ket-bra values. These interchanged values are identical
and (1hkb). The final result is that only one contribution is to those that would have been computed d{Rloop propaga-
required from each of the loop shapes in Figure 2. tions had occurred. This is a consequence of the symmetric

Figure 2 is based on Figure 8 in ref 6, but there are a few segment value conventib# for which 7/(T'y) = 7/(Ty) with
minor differences. Instead of associating a Hamiltonian integral TT,(dbra Okets Bbra Bret; Qu) = Tu(Okets dora brets bora QTL). These
with each loop shape as in ref 6, Figure 2 shows the density interchanged values can be combined early at leweith the
matrix element to which it contributes along with the coefficient (1a) and (%) terms, and the remaining propagations require
that results from the symmetrization in eq 9. In our current only threeV arrays within the innermostloop. These and other
procedure, loop shape (9) is not computed at all, since it is similar optimization possibilities will be explored in the future.
equivalent to the braket interchange of loop shapebjaf all R
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